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Problems
Algebra

Determine all real numbers « such that the number

la] + |2a] + -+ + |na]

is a multiple of n for every positive integer n. (Here |z| denotes the greatest integer less than
or equal to z.)

(Colombia)
Let n be a positive integer. Find the minimum possible value of
S =293 + 2" + - 4+ 2"22,
where xg, x1, ..., x, are nonnegative integers such that o +x; +--- + z, = n.
(China)
Decide whether for every sequence (a,,) of positive real numbers,
3 4392 4. 30 1
<
(201 4202 4 ... 4 200)2 2024
is true for at least one positive integer n.
(China)

Let Z~q be the set of all positive integers. Determine all subsets S of {29, 21 2% ...}

for which there exists a function f: Z-y — Z-¢ such that

S ={fla+b)— fla) = f(b) [ a,b & Z=o}.

(Thailand)
Find all periodic sequences ay, as, ... of real numbers such that the following
conditions hold for all n > 1:
Ania + a2 =a, +a and lap1 — ay] < 1.
(Kosovo)

- Let ag, aq, as, ... be an infinite strictly increasing sequence of positive integers such
that for each n > 1 we have

{anfl + Gpy1
an I —

9 VAL Cln+1} .

Let by, bs, ... be an infinite sequence of letters defined as

bn _ {Aa if Ap = %(an—l + an+l);

G, otherwise.

Prove that there exist positive integers ng and d such that for all n > ny we have b, 4 = b,.
(Czech Republic)

- Let Q be the set of rational numbers. Let f: Q — Q be a function such that the
following property holds: for all x, y € Q,
fla+f)=fl@)+y or  f(fl@)+y) =z+ fly).

Determine the maximum possible number of elements of {f(x) + f(—x) | x € Q}.
(Japan)
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- Let p # ¢ be coprime positive integers. Determine all infinite sequences ay, as, ... of
positive integers such that the following conditions hold for all n > 1:

max(an, Anit, .- - Angp) — MDAy Apg1ys - vy Gpyp) = P and
q

Max(ap, i1y -« -y Angg) — MDAy Qpgy - - oy Qpig) =

(Japan)
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Combinatorics

Let n be a positive integer. A class of n students run n races, in each of which they
are ranked with no draws. A student is eligible for a rating (a,b) for positive integers a and b
if they come in the top b places in at least a of the races. Their final score is the maximum
possible value of a — b across all ratings for which they are eligible.

Find the maximum possible sum of all the scores of the n students.
(Australia)

Let n be a positive integer. The integers 1, 2, 3, ..., n? are to be written in the cells
of an n x n board such that each integer is written in exactly one cell and each cell contains
exactly one integer. For every integer d with d | n, the d-division of the board is the division
of the board into (n/d)? nonoverlapping sub-boards, each of size d x d, such that each cell is
contained in exactly one d x d sub-board.

We say that n is a cool number if the integers can be written on the n x n board such that,
for each integer d with d | n and 1 < d < n, in the d-division of the board, the sum of the
integers written in each d x d sub-board is not a multiple of d.

Determine all even cool numbers.

(Tiirkiye)
Let n be a positive integer. There are 2n knights sitting at a round table. They

consist of n pairs of partners, each pair of which wishes to shake hands. A pair can shake hands
only when next to each other. Every minute, one pair of adjacent knights swaps places.

Find the minimum number of exchanges of adjacent knights such that, regardless of the
initial arrangement, every knight can meet her partner and shake hands at some time.
(Belarus)

On a board with 2024 rows and 2023 columns, Turbo the snail tries to move from
the first row to the last row. On each attempt, he chooses to start on any cell in the first row,
then moves one step at a time to an adjacent cell sharing a common side. He wins if he reaches
any cell in the last row. However, there are 2022 predetermined, hidden monsters in 2022 of
the cells, one in each row except the first and last rows, such that no two monsters share the
same column. If Turbo unfortunately reaches a cell with a monster, his attempt ends and he
is transported back to the first row to start a new attempt. The monsters do not move.

Suppose Turbo is allowed to take n attempts. Determine the minimum value of n for which
he has a strategy that guarantees reaching the last row, regardless of the locations of the
monsters.

(Hong Kong)

Let N be a positive integer. Geoff and Ceri play a game in which they start by writing
the numbers 1, 2, ..., N on a board. They then take turns to make a move, starting with
Geoff. Each move consists of choosing a pair of integers (k,n), where k = 0 and n is one of the
integers on the board, and then erasing every integer s on the board such that 2% | n — s. The
game continues until the board is empty. The player who erases the last integer on the board
loses.

Determine all values of N for which Geoff can ensure that he wins, no matter how Ceri

plays.
(Indonesia)
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Let n and T" be positive integers. James has 4n marbles with weights 1, 2, ..., 4n.
He places them on a balance scale, so that both sides have equal weight. Andrew may move a
marble from one side of the scale to the other, so that the absolute difference in weights of the
two sides remains at most 7.

Find, in terms of n, the minimum positive integer T" such that Andrew may make a sequence
of moves such that each marble ends up on the opposite side of the scale, regardless of how

James initially placed the marbles.
(Ghana)

Let N be a positive integer and let a, as, ... be an infinite sequence of positive
integers. Suppose that, for each n > N, a,, is equal to the number of times a,,_; appears in the
list ai, a4, ..., Qp_1.

Prove that at least one of the sequences ai, as, as, ... and as, a4, ag, ... is eventually
periodic.
(Australia)

- Let n be a positive integer. Given an n x n board, the unit cell in the top left corner
is initially coloured black, and the other cells are coloured white. We then apply a series of
colouring operations to the board. In each operation, we choose a 2 x 2 square with exactly
one cell coloured black and we colour the remaining three cells of that 2 x 2 square black.

Determine all values of n such that we can colour the whole board black.
(Peru)
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Geometry

Let ABCD be a cyclic quadrilateral such that AC' < BD < AD and ZDBA < 90°.
Point E lies on the line through D parallel to AB such that E and C' lie on opposite sides of
line AD, and AC' = DE. Point F lies on the line through A parallel to C'D such that F and C
lie on opposite sides of line AD, and BD = AF.

Prove that the perpendicular bisectors of segments BC' and E'F' intersect on the circumcircle
of ABCD.
(Ukraine)

Let ABC be a triangle with AB < AC' < BC, incentre [ and incircle w. Let X be the
point in the interior of side BC such that the line through X parallel to AC' is tangent to w.
Similarly, let Y be the point in the interior of side BC' such that the line through Y parallel
to AB is tangent to w. Let Al intersect the circumcircle of triangle ABC again at P # A. Let
K and L be the midpoints of AB and AC', respectively.

Prove that ZKIL + /Y PX = 180°.
(Poland)

Let ABCDFE be a convex pentagon and let M be the midpoint of AB. Suppose
that segment AB is tangent to the circumcircle of triangle CM E at M and that D lies on the
circumcircles of triangles AM E and BMC'. Lines AD and M FE intersect at K, and lines BD
and MC intersect at L. Points P and @ lie on line EC' so that /ZPDC = ZEDQ = ZADB.

Prove that lines K P, L@, and M D are concurrent.
(Belarus)

Let ABCD be a quadrilateral with AB parallel to CD and AB < C'D. Lines AD
and BC' intersect at a point P. Point X # C on the circumcircle of triangle ABC' is such
that PC = PX. Point Y # D on the circumcircle of triangle ABD is such that PD = PY.
Lines AX and BY intersect at Q).

Prove that P(Q is parallel to AB.
(Ukraine)

Let ABC be a triangle with incentre I, and let §2 be the circumcircle of triangle BIC.
Let K be a point in the interior of segment BC such that Z/ BAK < Z K AC. The angle bisector
of Z BK A intersects 2 at points W and X such that A and W lie on the same side of BC', and
the angle bisector of ZC' K A intersects () at points Y and Z such that A and Y lie on the same
side of BC.

Prove that ZWAY = ZZAX.
(Uzbekistan)

Let ABC be an acute triangle with AB < AC, and let I" be the circumcircle of ABC'.
Points X and Y lie on I' so that XY and BC' intersect on the external angle bisector of ZBAC.
Suppose that the tangents to I' at X and Y intersect at a point 7" on the same side of BC'
as A, and that TX and TY intersect BC' at U and V, respectively. Let J be the centre of the
excircle of triangle TUV opposite the vertex T

Prove that AJ bisects ZBAC.
(Poland)
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- Let ABC be a triangle with incentre I such that AB < AC < BC. The second
intersections of AI, BI, and CI with the circumcircle of triangle ABC' are M4, Mg, and M,
respectively. Lines Al and BC' intersect at D and lines BMs and C'Mp intersect at X. Suppose
the circumcircles of triangles X MpMs and X BC' intersect again at S # X. Lines BX and CX
intersect the circumcircle of triangle SX M4 again at P # X and ) # X, respectively.

Prove that the circumcentre of triangle SID lies on PQ.
(Thailand)

- Let ABC' be a triangle with AB < AC' < BC', and let D be a point in the interior of
segment BC. Let E be a point on the circumcircle of triangle ABC such that A and E lie on
opposite sides of line BC' and / BAD = /FEAC. Let I, Ig, I, Jg, and Jo be the incentres of
triangles ABC, ABD, ADC, ABE, and AEC, respectively.

Prove that Ig, I, Jg, and Jo are concyclic if and only if AI, IgJc, and Jglo concur.
(Canada)
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Number Theory

Find all positive integers n with the following property: for all positive divisors d of n,
we have that d + 1 | n or d + 1 is prime.
(Ghana)

Determine all finite, nonempty sets S of positive integers such that for every a, be S
there exists c € S with a | b + 2c.

(Netherlands)
Determine all sequences ai, as, ... of positive integers such that, for any pair of
positive integers m < n, the arithmetic and geometric means
A + Qmy1 + -+ Ay 1
and  (AmQpmiq - - - Q) =mF 1
n—m+ 1 ( mWm—+1 n)
are both integers.
(Singapore)

Determine all positive integers a and b such that there exists a positive integer g such
that ged(a™ + b,0™ + a) = g for all sufficiently large n.
(Indonesia)

Let § be a finite nonempty set of prime numbers. Let 1 = b; < by < --- be the

sequence of all positive integers whose prime divisors all belong to §. Prove that, for all but

finitely many positive integers n, there exist positive integers aq, as, ..., a, such that
a; Qs an, 1 1 1
b by bn by be bn
(Croatia)

Let n be a positive integer. We say that a polynomial P with integer coeffi-
cients is n-good if there exists a polynomial () of degree 2 with integer coefficients such that
Q(k)(P(k) + Q(k)) is never divisible by n for any integer k.

Determine all integers n such that every polynomial with integer coefficients is an n-good

polynomial.
(France)

Let Z-( denote the set of positive integers. Let f: Z-y — Z-o be a function satisfying
the following property: for m, n € Z-q, the equation

f(mn)? = f(m?) f(f(n))f(mf(n))
holds if and only if m and n are coprime.

For each positive integer n, determine all the possible values of f(n).
(Japan)
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Solutions

Algebra
Determine all real numbers « such that the number

la] + |2a) + -+ + |na]

is a multiple of n for every positive integer n. (Here |z| denotes the greatest integer less than

or equal to z.) ( )
Colombia

Answer: All even integers satisfy the condition of the problem and no other real number «
does so.

Solution 1. First we will show that even integers satisfy the condition. If o = 2m where m
is an integer then

la] +[2a] + -+ |na) =2m +4m + - - - 4+ 2mn = mn(n + 1)

which is a multiple of n.

Now we will show that they are the only real numbers satisfying the conditions of the
problem. Let o = k + € where k is an integer and 0 < € < 1. Then the number

la| + [2a] + -+ - + |na] = k + |e| + 2k + |2¢| + - - - + nk + |ne]
:k:n(n+1)

5 + le] + |2€¢] + - - + |ne|

has to be a multiple of n. We consider two cases based on the parity of k.

Case 1: k is even.

Then w is always a multiple of n. Thus
le] + [2€] + - - + |ne]

also has to be a multiple of n.

We will prove that |ne| = 0 for every positive integer n by strong induction. The base case
n = 1 follows from the fact that 0 < e < 1. Let us suppose that |me| = 0 for every 1 < m < n.
Then the number

le| + [2€] + - - + |ne] = |ne]

has to be a multiple of n. As 0 < e < 1 then 0 < ne < n, which means that the number |ne|
has to be equal to 0.

The equality |ne| = 0 implies 0 < € < 1/n. Since this has to happen for all n, we conclude
that € = 0 and then « is an even integer.
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Case 2: k is odd.

We will prove that |ne|] = n — 1 for every natural number n by strong induction. The base
case n = 1 again follows from the fact that 0 < e < 1. Let us suppose that |me| = m — 1 for
every 1 < m < n. We need the number

kn(n2+1)+[6J+[26J+...+[nejZW+O+1+---+(n—2)+ln€J
kn(n+1) (n—2)(n—1)
= 5 + [ne|
E+1 , k-3
- n? + 5 n+ 1+ |ne|

to be a multiple of n. As k is odd, we need 1 + |ne| to be a multiple of n. Again, as 0 <e <1
then 0 < ne < n, so |nel =n — 1 as we wanted.

This implies that 1 — % < € < 1 for all n which is absurd. So there are no other solutions
in this case.

Solution 2. As in Solution 1 we check that for even integers the condition is satisfied. Then,
without loss of generality we can assume 0 < o < 2. We set S, = | + [2a] + - - + |na].
Notice that

S, =0 (mod n) (1)
Sp =S, — Sp—1 =|na] (modn—1) (2)

Since ged(n,n — 1) =1, (1) and (2) imply that
Sp =n|nal (mod n(n —1)). (3)

In addition,

0 < n|na| -8, = Zn: <[naj — [kaj) < Zn: (na —ka + 1) = w& + n. (4)

For n large enough, the RHS of (4) is less than n(n — 1). Then (3) forces

0=35, —nlnal = i ([naJ - [kaj) (5)

k=1

for n large enough.

Since |na| — |ka] = 0 for 1 < k < n, we get from (5) that, for all n large enough, all these
inequalities are equalities. In particular |a| = |na| for all n large enough, which is absurd
unless a = 0.

Comment. An alternative ending to the previous solution is as follows.
By definition we have S,, < aw, on the other hand (5) implies S,, = an
enough, so o = 0.

2 —n for all n large
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Solution 3. As in other solutions, without loss of generality we may assume that 0 < o < 2.
Even integers satisfy the condition, so we assume 0 < o < 2 and we will derive a contradiction.

By induction on n, we will simultaneously show that

la] +|2a] + -+ + |na] = n7, (6)

and <a<?2. (7)

The base case isn = 1: If a < 1, consider m = [é] > 1, then
la] + [2a] + - + |ma] =

is not a multiple of m, so we deduce (7). Hence, |a] = 1 and (6) follows.
For the induction step: assume the induction hypothesis to be true for n, then by (7)

1
n+l—-——<(n+1la<2n+2.
n

Hence,

2

n* +2n < |a| + |2a] + -+ [na| + [(n+ Da] = n® + [(n+ 1)a) < n? +2n + 2.

So, necessarily |(n + 1)a] = 2n + 1 and
la] + [2a] + -+ [na] + [(n + Da] = (n + 1)

in order to obtain a multiple of n + 1. These two equalities give (6) and (7) respectively.
Finally, we notice that condition (7) being true for all n gives a contradiction.

Solution 4. As in other solutions without loss of generality we will assume that 0 < a < 2
and derive a contradiction. For each n, we define
la] + |2a] + -+ + |na|

bnz )
n

which is a nonnegative integer by the problem condition and our assumption. Note that
|(n + Da] = |af,|2a],...,|na] and |(n+ 1)a] > |af
for all n > L. Tt follows that b,41 > b, = bpy1 = b, + 1 for n > <. Thus, for all such n,
b, =n+C

where C' is a fixed integer. On the other hand, the definition of b,, gives

b — la] + 2a] + - - + |na] <a+2a+n---+na:%<n+1>’
n

which is a contradiction for sufficiently large n.
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Let n be a positive integer. Find the minimum possible value of
S =205 + 2'af + - + 2",

where xg, x1, ..., x, are nonnegative integers such that o +z; +--- + x, = n.

(China)

n(n+1)

Answer: The minimum value is 5

Solution 1. For a fixed n, let f(n) denote the minimum possible value of S. Consider the

following variant: among all infinite sequences of nonnegative integers xq, x1, ..., only finitely
many of which are nonzero, satisfying zo + z1 + - - - = n, let g(n) denote the minimum possible
value of

T = 201‘2 + 21x2 + 22x2 +

It is clear that g(n) < f(n). Conversely, it is easy to see that if a sequence xg, x1, ... achieves
the minimum of g(n), then xy > z; > --- and thus z,,1 = 2,0 = --- = 0. In particular,
f(n) =g(n).

Now, we hope to get an inductive formula for g(n).
Note that, in order to minimise 7" for n > 1, we must have xy = 1 since the sequence (z;)
is nonincreasing. Note that the minimal value of

2'wt + 2225 + - = 2(2% 7 + 225 + )

over all infinite sequences of nonnegative integers with x; + x9 + - - - = m is exactly 2g(m). As
a result, for n > 1 we have

: 2
- 29(n — zq)) .
g(n) o min (25 + 29(n — o))

We now prove g(n) = ™ "H ) by induction. It is clear that ¢(0) = 0. Assume that this has
been proved for n =0, 1, . N — 1. Then,

23+ 29(N — z0) = x5 + (N — 20)(N — 29 + 1) (1)
=222 — (2N + 1)z + N(N + 1)

:%[(2x0—N)(2x0—N—1)+N2+N].

The product of two consecutive integers (2xg — N)(2xo — N — 1) is always nonnegative, and
it is zero precisely when 2z is the even number in {N, N + 1}. Thus the minimum of the final

expression in equation (1) is (N? + N), so g(N) = w, completing the inductive proof.
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Solution 2. Consider the following table of numbers, where the row and column indices start
from 0, and a;; = 2°(2j + 1) for ¢, j > 0.

10 14 18 22
12 20 28 36 44
24 40 56 T2 88
16 48 80 112 144 176

=W N = O

Every number can be written uniquely as a product of a power of 2 and an odd number so
every positive integer appears exactly once in the table above. It is easy to see that numbers
in each row and each column are strictly increasing. Since the sum of the first x odd positive
integers is 2, the sum of the first z; numbers in the k'™ row is 2¥22, the k'™ term appearing
in S.

Thus, the sum S can be interpreted as the result of taking a total of n numbers from the first
n rows of the table such that we take the leftmost x; numbers from row k (where Y7 ), = n),
and then computing the sum of these n numbers. In particular, the minimum possible value
of S is the same as the sum of the smallest n numbers in this table, since every row and every
column of the table is strictly increasing.

Moreover, the smallest n numbers, namely 1, 2, ..., n, appear in the first n rows, so the
minimum of S is
n(n+1)

1424 4n=
" 2

Comment. As can be seen from the table in Solution 2, the equality case of the problem is given by

n 1

So z; is the result of rounding 57+ to the nearest integer. This also gives a proof of the identity

& n 1

n=2 [2+1 + QJ )
i=0

which can be separately proven by induction on n: when n is incremented by 1, exactly one term on

the right hand side, namely the one corresponding to i = v5(n), increases by 1 while the others remain
the same.

Comment. If the condition that the x; are nonnegative integers is relaxed to the x; being nonnegative
reals, the problem can be solved by an application of the Cauchy-Schwarz inequality:

(20427 4220 2l 4+ 2%aR) = (2o 4+ ag)? = 0

n2

0.2 | 91,2 n,.2
= 2y + 2727+ +2 xn>2_2_n.

The equality case for this relaxed problem is given by

B 27n n 1
Ti= 5 90 ¥ |51 T o
In fact, when the terms in the optimal sequence for the real case are all rounded to the nearest integer,
we obtain the optimal sequence for the original problem. While thinking about the real case may guide

one towards the equality case of the original problem, it does not seem like it can be easily continued
into a full solution.
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Decide whether for every sequence (a,) of positive real numbers,

301 4 392 4 ... 4 3% - 1
(2(11 4+ Qa2 4 ... 4 2an)2 2024

is true for at least one positive integer n.
(China)

Comment. The question can be asked in several forms, as follows:
(i) students could be asked, as above, to show the existence of such an n;
ii) students could be asked to show that this happens for all sufficiently large n;
ii) student 1d be asked to show that this h for all sufficiently 1
iii) students could be given a concrete positive integer N and asked to show it for all n > N.
iii) student 1d be gi t itive int N and asked to show it for all N

The solutions below provide varying bounds for N.
Answer: The answer is “yes”. there is always such an n.
1

2024

Common remarks. We write ¢ =

Solution 1. For every positive integer n, let M,, = max(ay,as,...,a,). We first prove that

(2)

391 4 302 4 ... 4 30 (S)M”
< 1 .

(20 + 202 4 -+ 200)2 ~ \4

My

Fori=1,2, ..., n, from (%)al < (%)Mn we can obtain 3% < (%) - 2Mn 9% By summing up

over all 7,
n . 3 M, A n . 3 M, n . 2
23 <<Z> -2 -22 <(Z> (22 )

which is equivalent to (2).

Now let p = logy; %, so that p is the positive real number with (%)“ = ¢. If there is an
index n such that a, > u, then M,, > a,, > i, and hence

3 £3% 443 (3 M"< 3\ _ .
(201 4 202 4 ... 4 2an)2 = \ 4 4) 7

Otherwise we have 0 < a; < p for all positive integers 7, so

3 432 4. 43 m-3r 3

(2a1+2a2+...+2an)2 = (n.1)2 _E'

Ifn> [%J, this is less than ¢.

Comment. It is also possible to prove (2) by induction on n. The base case n = 1 is clear. For the
induction step, after ordering ai, as, ..., a, in increasing order as by < b < -+ < by, it suffices, for
example, to verify that

R e R 30 4302 44 30 I i ok i
(201 4 2b2 4 ... 4 2bn)2 T (201 4 Qb2 . Qb ) (202 ... 26n) T (202 L. g 26027

n n )
The second inequality is equivalent to 371 >} 2% < 201 3 3% which follows from (%)b1 < (%)b’.
i=2 i=2
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Solution 2. We will combine two upper bounds.

First, start with the trivial estimate

B R i <3a1+-'-+3a”
(201 4 ... 4 2an)2 T gar 4.4 4an’

By applying Jensen’s inequality to the convex function %34 we get

40 4 g qen (3m) L (gen) OB - (3@ oot 3an)10g34

n B n - n
SO
AR M LR n loga 4-1
<2a1+..._|_2an)2\4a1_|_...+4an\ 301 4+ ... 4 3an )
Hence, (1) holds true whenever
1\ g3 =1
3 4 3 > (—) . (3)
£

Second, trivially
3M 4 30 - 3% 4. 30

(20 1 2em)E S n?

Y

so (1) is satisfied if
3 443 < e’ (4)

1 1
Ifn> (%)Hl"gS T then (1)®s™1 .n < £-n? and therefore at least one of (3) and (4) is
satisfied.

Solution 3. Define C' = log, 3 %, so that if a; > C then 3% < 5 -4%. We divide the sequence
into “small” and “large” terms by how they compare to C: let

Sp={i<n|a;<C} and L,={i<n|a >C}.

Then (1) is equivalent to

Zz‘eSn 3ai + Zieﬁn Sai - E + E
. 2 _ — ,
(Ziesn 2% + D, Qal) (ZieSn 20+ D, 2%) 22
If £, is nonempty, we have
Zier, 3" JE e e
N2 TS o
2 (Zz‘eﬁn 2%) 2

(Zz’esn 2% + Zz‘eﬁn 2&1-)2

and this also trivially holds when £,, is empty (in which case the LHS is zero).
Now suppose that n > g (%)C Note that 3% < (%)C 2% for i € S,,, so we have
a c a c c
Dics, 3 _ (B) Yies,? _ (3) _G) e
(Ziesn 20 + Zie[ﬁn 2ai)2 (Zieé‘n AL + Zieﬁn 2ai)2 ZieSn 2% + Zie£" 20 n 2

so we have (1).
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Solution 4. For every index ¢ = 1, 2, ..., n, apply the weighted AM-GM inequality to

numbers 2% and (n — 1) with weights logZ% ~ 0.585 and log, % ~ 0.415 as

200 4292 4 ... 429 > 2% 4 (n — 1)

3 4: og, 3 4
> log, 3 2% + log, 3 (n—1)= (2%)1 825 (n — 1)10g2 3

- <g> (n— 1)t > (g) (- 1),

By summing up fori =1, 2, ..., n,

(2 4 £ 2%)% = 3 2% (2 422 4 £ 2%) > (n — 1)Y0 ) 3™
i=1

=1
SO
3 A3 3 1
(2(11 4+ 902 4 ... 4 2an)2 (n — 1)2/5’
Ifn > (1) +1 then s <=
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Let Z-q be the set of all positive integers. Determine all subsets S of {292 2% ...}

for which there exists a function f: Z.q — Z-( such that
S={fla+b)—fla) = f(b) | a,beZzo}.
(Thailand)
Answer: S can be any subset of size 1 or 2.

Common remarks. For this problem, it is convenient to use notation such as {a,b,c} for
multisets rather than sets, and the subset relation is likewise that for multisets. Both solutions
use the following property of powers of 2: if 2% + 20 = 2¢ + 24 then {a,b} and {c, d} are the
same multiset. Define e(a, b) = log,(f(a + b) — f(a) — f(b)) = e(b, a). Thus,

fla+b) =2¢@Y 4 f(a) + f(b).

Solution 1. Clearly S must be nonempty. We start with constructions when 1 < |S| < 2.

o If S = {2*}, then take f(x) = cx — 2* for any integer ¢ > 2*.

o If S = {2% 2%} where k > ¢, then take f(z) = (2% — 29)|ax| — 2¢, where a > 2 is not an
integer. This works because |a(z + y)| — (|az| + |ay]) € {0, 1} for all z and y, and takes
both values; the lower bound on « ensures the values of f are positive.

Observe that, inductively,
fln) =2¢0D) 4 oe@D) oy o9eln=hD) 4 £(1),
Lemma 1. For any positive integers n and k,
{e(1,1),e(2,1),...,e(k —1,1)} = {e(n,1),e(n+1,1),...,e(n +k —1,1)}.

Proof. We work by induction on k; in the case k = 1, the first multiset is empty, which provides
our base case.
For the induction step, suppose k > 2 and we know that

{e(1,1),e(2,1),...,e(k —2,1)} = {e(n,1),e(n+1,1),...,e(n+k—2,1)}.
By definition, f(n + k) — f(n) — f(k) = 2°™*) and using the first observation we see that
Fntk)—f(n)— f(k) = (2e(n,1) 4 ooen+1l) 26(n+k—1,1)) _ (26(1,1) Lo 4y 26(1@—1,1)) '
From the induction hypothesis, we may write
{e(n,1),e(n+1,1),...;e(n+ k—2,1)} = {e(1,1),e(2,1),...,e(k—2,1)} U {a}

for some a. Thus
2e(n,k) — 90 4 26(n+k—1,1) . Qe(k—l,l)‘

So {e(n,k),e(k—1,1)} = {a,e(n+k—1,1)}. Thuse(k—1,1) =aore(k—1,1) =e(n+k—1,1),
and in either case we have our result. O

Lemma 2. The sequence e(1,1), e(2,1), e(3,1), ... takes at most two different values.
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Proof. Suppose for a contradiction that k& > 2 is the least index with e(k, 1) # e(1,1), and that
some ¢ > k has e({,1) ¢ {e(k,1),e(1,1)}. By Lemma 1, any block of k consecutive values of
the sequence has at least k — 1 values equal to e(1,1). This forces

e(l—1,1)=e(l —2,1)=---=e(l—(k—1),1) =e(1,1)
and

el+1,1)=e(l+2,1)=--=e(l+(k—1),1) =e(1,1).
But then the block e(¢—1,1), e(¢,1), e({+1,1), e(+2,1), ..., e(l+ (k—1),1) has length k+ 1
and does not contain e(k, 1), a contradiction. O

Finally, for any a and b we have

f(a + b) . f(a) . f(b) _ (26((1,1) + 26(a+1,1) + ... 2e(a+b—1,1)) . (26(1,1) + 2@(2,1) 4t 26(1)—1,1))
_ 26(i,1)

for some a <i<a+b—1. So |S| <2.

Comment. In the construction of functions, a > 2 is only necessary if k = £+ 1, to make sure f(1) # 0.
Otherwise, any nonintegral a > 1 suffices.

Solution 2. Subsets of size 1 or 2 can be achieved as in Solution 1, and & must be nonempty.
We consider such a set § with |S| = 3 and a corresponding function f in order to achieve a
contradiction. We will relate the e(a, b) to values of e(c, 1) with ¢+ 1 < a + b, leading to a proof
of Lemma 2 from Solution 1 that does not depend on Lemma 1 from that solution.

Suppose a > 1. We have f(a +b) — f(a) — f(b) = 2¢®® and also f(a) — f(a —1) — f(1) =
Qe(afl,l)7 S0

f(a + b) - f((l - 1) — f(l) — f(b) = Qe(a,b) + 26(11—1,1).
Similarly, f(a+ ) — f(a—1) = (b + 1) = 2654 and f(b+ 1) = £(1) - £) = 22, 50

flatb) = fla=1) = (1) = f(B) = 2010 4 220,

Thus either
e(a,b) =e(a—1,b+1) and e(a—1,1)=e(b,1)

or
e(a,b) =e(b,1) and e(a—1,b+1)=e(a—1,1).

For n > 4, we consider these possibilities as (a, b) ranges over all pairs with a + b = n. If the
first case holds for every such pair (that is, if e(c,1) = e(d, 1) for all ¢ + d = n — 1), then all
the e(a, b) for a+b = n are equal (and the above equations do not constrain whether or not the
value is the same as any e(c, 1) with ¢ + 1 < n). Otherwise, the values of e(a,b) with a +b =n
are fully determined by the values of e(c, 1) for which e(¢, 1) # e(n — 1 — ¢, 1), and are not all
equal.

Specifically, if e(c, 1) = jand e(n—1—¢, 1) = k with j # k, we have e(¢,n—c) = j = e(n—c, ¢)
and e(c+1,n—c—1) =k =e(n —c—1,c+ 1). Every other value of e(a,b) with a +b =n
is then determined by the rule that e(a,b) = e(a — 1,0 + 1) if e(a — 1,1) = e(b,1): if we
have e(c,1) # e(n — 1 — ¢, 1), and e(¢,1) # e(n — 1 =, 1), but e(d,1) = e(n — 1 —d, 1)
for all ¢ < d < ¢, then if ¢ < ¢ —1 we have e(¢ — 1,n — (¢ — 1)) = e(d,n — (), then if
c<d—=2wehavee(ld —2,n—(d—=2) =eld —1,n—(d—1)) =e(d,n—¢), and so on
until e(c + 1,n —c— 1) = e(d,n — ) (yielding a contradiction if e(n — ¢ — 1,1) # e(c, 1);
such a contradiction also arises trivially if c+ 1 = ¢ and e(n —c—1,1) # e(c,1)). If ¢ is the
least integer such that e(c,1) # e(n — 1 — ¢, 1), the values of e(a,b) with a < ¢ are similarly
determined to be equal to e(¢,n — ¢) (and likewise for a > n — ¢).
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In other words, if we list the values in ascending order of a from 1 to n — 1, any gaps
between the pairs of adjacent values determined when e(c,1) # e(n — 1 — ¢, 1) are filled with
copies of the previously determined adjacent values, and if the values on either side of such a
gap are different, we have a contradiction (including in the degenerate cases where the pairs
are adjacent or overlap, if ¢ + 1 = /). Note in particular that every value of e(a,b) is a value
of e(c, 1) for some ¢ with ¢+ 1 < a + b.

If |S| = 3, that means that e(c, 1) takes at least three different values. Let m be such that
e(m, 1) does not equal any e(c, 1) for ¢ < m, and there are exactly two different values of e(c, 1)
for ¢ < m (and thus m > 3).

Because e(m, 1) does not equal any e(c, 1) for ¢ < m, we have that all e(a,b) for a+b = m+1
are equal, and e(c,1) = e(d, 1) for all ¢ + d = m. We now consider the values of e(a,b) for
a+b = m+2 determined by the above rules. Since e(m, 1) # e(1,1), we have e(1, m+1) = e(1,1)
and e(2,m) = e(m,1). If there were any other e(d,1) # e(m + 1 — d, 1), consider the one with
minimal d > 1; because e(m, 1) # e(d, 1), we arrive at a contradiction. So every e(c,1) = e(d, 1)
for ¢ +d = m + 1 except for e(m, 1) # e(1,1). But these equalities form a path connecting all
e(c, 1) for ¢ < m:

e(1,1) =e(m—1,1) =e(2,1) =e(m—2,1) =¢(3,1) =

which contradicts the assumption we made that there were exactly two different values of e(c, 1)
for c <m.

Solution 3. Constructions for 1 < |S| < 2 are shown in Solution 1, and & must be nonempty.
We suppose |S| = 3 to derive a contradiction.

Claim 1. e(a,b), e(b,c), and e(a,c) can take at most two different values.
Proof. By expanding f(a + b + ¢) in three different ways, we get
2e(a,b) + 2e(c,a+b) _ 2e(b,c) + 2e(a,b+c) _ 2e(a,c) + 2e(b,a+c).

The result follows from the equality of the three multisets of exponents. ]

For Claims 2 to 4, we fix k and let N be the smallest integer such that e(a, N —a+1) =k
for some a < N.

Claim 2. For any b with b < N, we must have e(b,N —b+1) = k.

Proof. Suppose that e(a, N —a + 1) = k and a < b. Expanding f(a + (b—a)+ N —b+1) in
two different ways, we see that

Ze(a,b—a) + 2e(b,N—b+l) _ 26(N—b+1,b—a) + 26(N—a+1,a)'

By the minimality of N, we must have e(b, N —b+ 1) = ¢(N —a + 1,a). The case of a > b
follows by replacing a and b with N —a+ 1and N —b+ 1. ]
Claim 3. e(a,1) = e(N —a+ 1,1) for any a satisfying 1 <a < N.

Proof. By Claim 2, e(a, N—a+1) = k. Then by Claim 1, e(a, N—a+1), e(a, 1), and e(N—a+1,1)
can take at most two different values. But by the minimality of N, we must have e(a, N—a+1) #
e(a,1) =e(N —a+1,1). O
Claim 4. e(a,1) = e(N —a,1) for any a satisfying 1 < a < N.

Proof. By Claim 2, e(a, N —a +1) = e(a+ 1,N —a) = k. Expanding f(1 +a+ (N —a)) in
two different ways, we see that

26(1,(1) + 26(a+1,N—a) _ Qe(l,N—a) + 26(N—a+1,a)‘

Therefore e(1,a) = e(1, N — a), as required. O

If |S| = 3, then there exist 1 < Ny < N, where N, and N, are the minimal values corre-
sponding to k£ and ¢. But Claims 3 and 4 imply that e(a, 1) is constant for all 1 < a < Ny,
which is a contradiction.
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A5. Find all periodic sequences aj, as, ... of real numbers such that the following
conditions hold for all n > 1:

Ania + a2 =a, +a and lan1 —an] <1
(Kosovo)
Answer: The sequences satisfying the conditions of the problem are:
C,—C,Cy—Cy ...,
d,d,d,d,...,
where ¢ € [—3, 1] and d is any real number.
Solution 1. We rewrite the first condition as
Unto + A1 = (Qns1 + ap) (a1 —an + 1). (1)

If there exists a positive integer m such that a,, 11 + a,, = 0, then from equation (1) we have
any1 + a, = 0 for all positive integers n = m. By the fact that the sequence (a;11 + a;) is
periodic, we get a;1 + a; = 0 for every positive integer i. Thus the sequence (a;) is of the form
¢, —¢, ¢, —¢, ... for some |c| <

Now suppose that a, 1 + a, # 0 for every positive integer n. Let T be the period of the
sequence. From equation (1) we have

T a +a L
1 :1_[ 142 i+1 1_[ az+1_ai+1)-

i=1 Qiv1 + Q4

Combining with the second condition |a;41 — a;] < 1, we have a;11 —a; + 1 > 0. Using the
AM-GM inequality we get

1 ﬁ( +1) < Sy~ 1) 1
= a; — a; < = 1.
11 +1 T

So the equality holds, and thus we get
A — a1 = az —az = -+ = dry1 — ar,

which means that (a;) is a constant sequence.
So all sequences satisfying the conditions of the problem are those listed above.
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Solution 2. Define s, = a,41 + a,, and d,, = a,,.1 — a,, so the original sequence is periodic if
and only if both these sequences are periodic. Rearranging the given conditions yields s, =
sp(l+dy,) and d,qq = dy (s, — 1), with |d,| < 1 for all n.

If s, = 0 for some n then s; = 0 for all 7 > n, and for the sequence to be periodic we must
have all s; = 0 and the sequence ¢, —c, ¢, —c, ..., for some |c| < % Similarly, if d,, = 0 for
some n and the sequence is periodic, then all d; = 0 and the sequence is ¢, ¢, c, . ...

We claim those are the only periodic sequences, so suppose for contradiction that we have
a periodic sequence where no s; or d; is 0. Under this hypothesis, we will prove that (s,), (d,)
have the following properties.

1. All s, are positive numbers. As |d,| < 1 and s,11 = s,(1+d,) # 0, it follows that d,, > —1
and that all s, have the same sign (all positive or all negative). If all s, are negative,
then |d, 41| = |dn(s, — 1)| > |d,], so |d;] is a strictly increasing sequence, contradicting
periodicity.

2. Whenever d,, > 0 we have 0 < s, < 1. Suppose for contradiction that we have d,, > 0
and s,, > 1 for some n. Since d,, .1 # 0 we have s,, > 1, and then d,,;1 > 0, s,,1 > s, > 1.
Inductively, all d; > 0 for ¢ > n, and s;,1 > s; for ¢ > n, contradicting periodicity.

Now we can get the desired contraction as follows. Suppose that the period of (a;) is T', then
ZiT=1 d; = ary1—ay = 0, hence there is an n such that d,, > 0. By property 2 we get 0 < s,, < 1,
and in particular s, < 2. Suppose that we have s; < 2. If d; < 0, then s;41 = s;(1+d;) < s5; < 2;
if d; > 0, then by property 2 we have 0 < s; < 1, and then s;.1 = s;(1 + d;) < 2s; < 2. In both
cases we get s;,1 < 2, and then by induction we get s, < 2 for all £ = n. But then we have
| 11| = |di(sk — 1)| < |dk|, which contradicts the fact that (dy) is periodic.

So the only periodic sequences are the two listed above.

Solution 3. Note that if a,,,1 = —a, for any n, then a,,2 = a, = —a,,1, yielding the first
answer by periodicity. Also, if a,,.1 = a,, for any n, then a,,» = a,, = a,41, yielding the second
answer by periodicity. If a,.2 = a, for any n, then a? = a2, so ay41 = +a, and one of those
two cases applies. Henceforth, we will assume that the sequence is neither one of the answers
and a, # Gpy1, —Gnyi1, Anio for all n for the rest of the solution. Note that the recursion
rearranges to

nto — ne1 = (a5 4y — Ans1) — (a5 = an) = (Gng1 — @n)(@ni1 + an — 1). (2)

Claim 1. We have that a,, < % for all n.

Proof. First, we cannot have a,, > % for all n. Otherwise, a, 1 + a, — 1 is positive for all n, so
(2) implies that a,, 2 — a,.1 has the same sign as a,,1 — a, for all n. This would mean that
the sequence is monotonic, contradicting periodicity.

On the other hand, if a, ;1 < % and a, o > %, then

9 9 1 1 1
Upyq = Opi2 + 0y — Ap 2 Apgp — & > — = |an+1| > 57

4 4

where we use the fact that t> — ¢ > —}l forall t e R. As a,41 < %, this means that a,; < —%

SO |@pt1 — anya] > 1, a contradiction. O

The identity (2) now implies that a,2 — a,+1 and a,,1 — a, are of opposite signs for all n,
so that a, < a,y1 <= Any1 > Apyo.

Claim 2. We have that a, > 0 <= a,,1 < 0: that is, the signs of the sequence are
alternating.
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Proof. First, it cannot be the case that a,, > 0 for all n. Indeed, then we would have from
Claim 1 that |a,4+1 + a, — 1| < 1 for all n, which by (2) means that |a,+1 — a,| is strictly
decreasing in n, a contradiction of the sequence’s periodicity. It also cannot be the case that
a, < 0 for all n, as then we would have that |a, 1 + a, — 1| > 1 for all n (noting that by the
nonconstant assumption we will never have a,, = a, 41 = 0) S0 |a,.1 — a,| is strictly increasing
in n.

Hence, if the signs of a,, are not alternating, then by periodicity there exists n with a,, > 0
and ay,41,0p49 < 001 ay,a,.1 > 0 and a,,o < 0. In either scenario, we have that

2 2 2
Ay — Qp = Ay ] — Apyg = 0, =20 = a, > 1
as a,, is positive and a,, 5 is nonpositive.

In the former case, we have that a, — a,,1 > 1, a contradiction. In the latter case, as
Gpy1 > Qpi2, Wwe must have that a,, < a, 1. But then we have that a, 1 —a,.2 > a, —a,0 > 1,

a contradiction. ]

Note now that we cannot have a,,2 > —a,,1 > a, for any n, as we would then have

2

2
il = An = Apga — Qp > —Apg1 — ap >0 = a, — apyr > 1,

a
a contradiction. Similarly, we cannot have a, > —a,+1 > a,42 for any n, as we would then
have

2 2
a, — Qp 1 = ap — Apy2 > Ay + App1 >0 = a, —apy > 1.

Having ruled out these scenarios, we may conclude that |a,1| is not between |a,| and |a, 2]
for any n.

Let k be an index such that |ay| is maximal. Note that we cannot have |a,_s| = |ag|, as that
would imply that a;_o = a; by Claim 2. We also cannot have |a;_s| < |ax_1|, as that would
imply that |aj_1| is between |a;_o| and |ag|. Hence, we must have that |ax_1| < |ax_2| < |ax|. As
|lay| is maximal, we cannot have a; = 0. If a5 > 0, then we have that a,—ay_o = a3 _,—a?_, <0,
a contradiction. If a; < 0, then we have that ap — a2 = ai — aiﬂ > 0, a contradiction.
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- Let ag, a1, as, ... be an infinite strictly increasing sequence of positive integers such
that for each n > 1 we have

Ap—1 + Apy1
ap € 5 Vp—1 " Gpi (-

Let by, by, ... be an infinite sequence of letters defined as

b — Aa if an = %(an—l + an+1);
" GG, otherwise.

Prove that there exist positive integers ng and d such that for all n > ny we have b, 4 = b,.
(Czech Republic)

Common remarks. In fact, all known proofs proceed by showing that the eventual period of
the sequence (b,,) always consists of some number of occurrences of G (possibly zero) followed

by an A.

Such sequences of any period p > 1 exist. Indeed, consider the sequence
LB RPN e+ 1), ke D R+ DR (B DPTHE+2),.

The Tournament of the Towns, in Spring 2009 (Junior A-Level Paper, problem 4), considered
sequences satisfying exactly this fairly natural criterion. However, it asked a vastly easier
question about them: in the language of this problem, it asked whether every such sequence
had (b,) eventually constant. The answer to that problem is “no”, as heavily hinted by the
statement of this problem. Thus, at least so far as the Problem Selection Committee knows,
this is a novel problem about a family of sequences which has been previously considered.

Solution 1. We will show that the eventual period of sequence (b,) consists of any fixed
number of occurrences of G (possibly zero) followed by a single A.

We look at the ratios of consecutive terms of the sequence (a,). Let C and D be coprime
positive integers such that ay/ag = (C + D)/C. If b, = G then a,/a,—1 = api1/a,. lf b, = A
and a,/a,—1 = (C + kD)/(C + (k — 1)D) for some positive integer k then

Uy 20, —ap  C+ (k+1)D

an an ~ C+EkD

Thus, by induction, there is a sequence of positive integers (k,) for n > 1 which satisfies
an/an—1 = (C + k,D)/(C + (k, — 1)D) for all positive integers n. Moreover, we have k; = 1

and
ky,, if b, = G,
kn—i—l = .
k,+ 1, ifb, = A.

If there are only finitely many values of n such that b, = A then the problem statement
obviously holds (we can choose d = 1). Thus, we may assume that b, = A for infinitely many
n. This means that the sequence (k,,) attains all positive integer values. Given a value ¢ > 1,
denote by m, the last index where value ¢ occurs, that is, the index such that %, = ¢ and
kqurl =q+ 1.

Our aim is to prove that the sequence of differences (mq4+1 —my) is eventually constant. We
first show that it is bounded above. To that end, fix t > 1 (we will choose a suitably large ¢
later on) and consider a sequence s(t)g, s(t)1, ... defined for ¢ = 1 by s(t); = an,,/(C + ¢D)".
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We note two properties of s(t),. First, simple algebra gives

s(t)g+1 = g B (g C + (g +1)D\ ™
T (C+ (g+1)D)Y (C+ (q+ 1)D) C +¢D

U, C+ (q+1)D\mme (1) C+ (q+1)D\ e ma?
(C +¢D)t C +qD B C +qD '

It follows that

s(t)g > s(t)g+1 Mgr1 — My < t,
s(t)g = s(t)g+1 if and only if Mgr1 — My = t,
s(t)g < $(t)g41 Mgy1 — My > t.

Second, suppose that mg,.1 — my, > t for some positive integer g. We claim that in that case
s(t), is a positive integer. Indeed, we have

. C+ (¢+1)DY’
mq+t — Ymy C+C]D )

because Ky, 41 = kmg42 = -+ = k4t = ¢+ 1. Since C' + (¢ +1)D and C + ¢D are coprime we
have that
(e =
ey 4Dy

is an integer.

We choose T > 1 such that s(7"); < 1 (which exists since C'+ D > 1). Then, by induction
we can show that s(7'), < 1 for all ¢. Indeed, since s(T"), < 1, it is not a positive integer; this
means that m,,1 — my < T by the second property above. Hence by the first property above
we have s(T") 441 < s(T'), < 1, as needed.

This means that mg,q1 —m, < T for all ¢. Thus there is a largest integer 7" < T" with the
property that an equality m,.; — m, = 7" holds for infinitely many values of ¢.

Therefore, for all sufficiently large values of ¢ we have the inequality mgy1 —m, < 17,
which by the first property implies that the sequence s(7”) is decreasing from some point on.
Moreover, we know that the sequence attains infinitely many integer values since there are
infinitely many values of ¢ for which we have the equality m,.; —m, = T". As a consequence,
the sequence s(7"”) is constant from some sufficiently large index ) onwards.

This in turn means that the equality m,41 —my, = 7" holds for all ¢ > ). Note that b, = A
is equivalent to the fact that n = m, for some integer ¢q. Thus, the sequence (b,,) is periodic for
n = () with period 7", and the proof is complete.

Solution 2. First, observe that the statement holds immediately if b, = G for all n; otherwise,
there must be some n for which b, = A. Without loss of generality, we may assume that n = 1,
as we can translate the sequence without affecting the statement.

We define an arithmetic sequence (p,,) by taking py = ag/ ged(ag, a1) and p; = a1/ ged(ag, ay).
Note that py < p1, and hence that (p,) is an increasing sequence of positive integers, and also
that py = as/ ged(ag, a).

We also define a sequence of positive integers d,, = a,, — a,_1 and a sequence of positive
rational numbers ¢, = a,/a,_1.

Then the following facts are immediate consequences of the definitions:

o if bn = Gv then Qn+1 = Q4n and dn+1 = ann;
e if b, = A, then d, 1 = d;
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e ¢1 = p1/Do;

o if b, = Aand g, = pz‘/pi—la then ¢,41 = pz‘+1/Pi.
Now, let k; be the number of integers n for which b, = G and ¢, = p;/p;_1. If some k; is

infinite then b, is eventually always G; otherwise, all values of k; are nonnegative integers.
The sequence of values for d,, can be written as

p p\™ i\ p n\"™ (p2\ ™
dOadO_lv"'adO (_1) ,dO <_1) _2,...,d0 (—1> (—2) ,
Do Do DPo b1 Do y4!

and in particular all terms in this sequence are positive integers. Furthermore, p; and p;,1 are
coprime for all i, so the following sequence consists entirely of positive integers:

_ —k1
ug = dopy

_ —k1 k1—ko
uy = dopy ' Py )

_ —k1, ki1—ka ko—k3
ug = dopy " Py Y2 )

We will prove that k; is eventually constant, which implies that the sequence of b,, is eventu-
ally periodic with period consisting of k copies of G followed by an A (where k is that constant
value).

Observe that either k; is unbounded, or is bounded with eventual maximum k for some
constant k. In the second case, let ry be minimal such that k,, = k; in the first case let ry = 0.
We will construct an infinite sequence of integers as follows:

o If km-‘,—l = k’ri, then riv1=17; + 1

o If k,, 11 <k,,, then r;,; is the minimal positive integer greater than r; such that £, ,, > k,,

Observe that in the second case, such an r;;; must exist by our construction of ry.
We claim that w,,,, < u,, with equality only if k,, 41 = k,, (so riz1 = r; +1). Indeed, if

ky, 41 = k,, then
_ _ Fr;—kr;+1
Up,yy = Up;41 = Uy Pr; X Upy,

with equality if and only if k,, = k,,41.
Otherwise, we have

Urir  key=kei41 krip1—kr 42 . Eryp1—1=Fri 1y
T ri+1 Tit1—1 )
'LLr,-, 7 i+

7

so we just need to show that the right hand side is strictly less than 1. But this follows because

Frj—kri+1 Fkrit1—kri+2 Frypg—1=Frigq < Frj—kr;+2 krit2—kri+3 kri1—1—kri 1y
T4 ri+1 Tit1—1 p?”i-i-l p?“i+2 Tit1—1
kr;—kr;+3 kr;+3—kr, 44 Frip1—1—Frify
< p?‘i+2 ri+3 T 7'i+1_1
ke, —kr,
+1
< Pripi—1
<1,

where each inequality besides the last follows from the fact that p; < p;;1 and k,, > k; for
J < Tit1, and the last follows from the fact that k,, <k, ,.

Finally, the sequence u,, is an infinite nonincreasing sequence of positive integers so must
eventually be constant, yielding the claim.

Comment. The two solutions above differ in approach, but have some overlap in the structure they
reveal. Indeed, the C' + nD of Solution 1 is the p, of Solution 2, while the m,; — m, of Solution 1
turns out to be equal to the &, of Solution 2.
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- Let Q@ be the set of rational numbers. Let f: Q — Q be a function such that the
following property holds: for all x, y € Q,

fle+fy)=rf@) +y o f(f(x)+y) =z+ f(y)

Determine the maximum possible number of elements of {f(z) + f(—z) | z € Q}.
(Japan)

Answer: 2 is the maximum number of elements.

Common remarks. Suppose that f is a function satisfying the condition of the problem.
We will use the following throughout all solutions.

e a ~ bif either f(a) =bor f(b) = a,
e a—bif f(a) =0,

e P(x,y) to denote the proposition that either f(x + f(y)) = f(x) + y or f(f(x) +y) =
z+ f(y),

o g(x) = f(x) + f(—x).

With this, the condition P(z,y) could be rephrased as saying that = + f(y) ~ f(z) +y, and
we are asked to determine the maximum possible number of elements of {g(z) | = € Q}.

Solution 1. We begin by providing an example of a function f for which there are two values

of g(x). We take the function f(z) = |z| — {«}, where |z| denotes the floor of = (that is, the

largest integer less than or equal to x) and {x} = x — |z| denotes the fractional part of .
First, we show that f satisfies P(x,y). Given x,y € Q, we have

f@) +y = o] ={z} + [yl + {v} = (2] + lw]) + {y} = {=});
v+ fly) = =]+ {e} + [yl = {y} = (] + [w]) + {2} = {y}).

If {z} < {y}, then we have that the fractional part of f(z) + y is {y} — {2} and the floor is
|z] + |y], so f(z) +y — =+ f(y). Likewise, if {x} > {y}, then z + f(y) — f(z) + y. Finally,
if {x} = {y}, then f(z) +y =2+ f(y) = |z] + |y] is an integer. In all cases, the relation P is
satisfied.

Finally, we observe that if x is an integer then g(x) = 0, and if z is not an integer then
g(x) = —2, so there are two values for g(x) as required.

Now, we prove that there cannot be more than two values of g(z). P(z,x) tells us that
z+ f(z) ~ x + f(x), or in other words, for all z,

[+ f(z)) =z + f(x). (1)

We begin with the following lemma.

Lemma 1. f is a bijection, and satisfies

f(=f(=z)) = x. (2)
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Proof. We first prove that f is injective. Suppose that f(x1) = f(x2); then P(zq,x2) tells us
that f(z1) +x2 ~ f(22) +x1. Without loss of generality, suppose that f(x1)+zy — f(x2) + 1.

But f(z1) = f(22), so f(f(21) + x2) = f(f(z2) + 22) = f(x2) + z2 by (1). Therefore,
f(x2) + 21 = f(xa) + 2, as required.

Now, (1) with = = 0 tells us that f(f(0)) = f(0) and so by injectivity f(0) = 0.

Applying P(z, —f(z)) tells us that 0 ~ x + f(—f(z)), so either 0 = f(0) = x + f(—f(x))
or f(x + f(—f(x))) = 0 which implies that  + f(—f(x)) = 0 by injectivity. Either way, we
deduce that x = —f(—f(x)), or x = f(—f(—x)) by replacing = with —z.

Finally, note that bijectivity follows immediately from (2). ]

Since f is bijective, it has an inverse, which we denote f~1. Rearranging (2) (after replacing x
with —z) gives that f(—z) = —f~1(z). We have g(z) = f(z) + f(—x) = f(z) — [ }(2).

Suppose g(z) = u and g(y) = v, where u # v are both nonzero. Define 2/ = f~!(z) and
y' = f~1(y); by definition, we have

¥ -r—-a+u

vy —y—y +o.

Putting in P(2’,y) gives z +y ~ 2’ + ¢’ + v, and putting in P(z,y’) givesz+y ~ 2’ + ¢ + u.
These are not equal since u # v, and x + y may have only one incoming and outgoing arrow
because f is a bijection, so we must have either ' + 3 + v — z +y — 2’ + 3y + v or the same
with the arrows reversed. Swapping (z,u) and (y,v) if necessary, we may assume without loss
of generality that this is the correct direction for the arrows.

Also, we have —2' —u — —x — —2’ by Lemma 1. Putting in P(x + y, —2' — u) gives
y~1vy +v—u,and so y + v — u must be either ¢y + v or yy/. This means v must be either 0
or v, and this contradicts our assumption about v and v.

Comment. Lemma 1 can also be proven as follows. We start by proving that f must be surjective.
Suppose not; then, there must be some ¢ which does not appear in the output of f. P(x,t — f(x))
tells us that ¢ ~ x + f(t — f(x)), and so by assumption f(¢) = z + f(t — f(x)) for all . But setting
x = f(t)—tgivest = f(t — f(f(t) —t)), contradicting our assumption about ¢.

Now, choose some t such that f(t) = 0; such a t must exist by surjectivity. P(¢,t) tells us that
f(t) = t, or in other words ¢ = 0 and f(0) = 0. The remainder of the proof is the same as the proof
given in Solution 1.

Solution 2. We again start with Lemma 1, and note f(0) = 0 as in the proof of that lemma.

Pz, = f(y)) gives 2+ f(=f(y)) ~ f(x)—f(y), and using (2) this becomes z—y ~ f(x)—f(y).
In other words, either f(z —vy) = f(z) — f(y) or x —y = f(f(x) — f(y)). In the latter case, we

deduce that

Thus, f(y) — f(z) is equal to either f(y —z) or —f(x — y). Replacing y with = + d, we deduce
that f(z -+ d) — f(z) € {f(d), —f(~d)}.

Now, we prove the following claim.
Claim. For any n € Z-q and d € Q, we have that either g(d) = 0 or g(d) = +g(d/n).

In particular, if g(d/n) = 0 then g(d) = 0.
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Proof. We first prove that if g(d/n) = 0 then g(d) = 0. Suppose that g(d/n) = 0. Then
f(d/n) = —f(—=d/n) and so f(x + d/n) — f(x) = f(d/n) for any x. Applying this repeatedly,
we deduce that f(z +d) — f(x) = nf(d/n) for any x. Applying this with z = 0 and x = —d

and adding gives f(d) + f(—d) = O so g(d) = 0, and in particular the claim is true whenever
g(d) = 0.

Now, select n € Z~o and d € Q such that g(d) # 0, and observe that we must have g(d/n) #
0. Observe that for any k € Z we have that f(kd/n) — f((k — 1)d/n) € {f(d/n), —f(—d/n)}.
Let A; be the number of k € Z with ¢ —n < k < i such that this difference equals f(d/n).

We deduce that for any i € Z,

flid/n) = fGid/n—d) =Y f(kd/n) = f((k = 1)d/n)

— A (d/n) — (n— A)F(~d/n)
= —nf(—d/n) + Ag(d/n).

Since g(d/n) is nonzero, this is a nonconstant linear function of A;. However, there are only
two possible values for f(id/n) — f(id/n — d), so there must be at most two possible values
for A; as i varies. And since A;,1 — A; € {—1,0, 1}, those two values must differ by 1 (if there
are two values).

Now, we have

f(d) = f(0) = —=nf(=d/n) + Ang(d/n),  and
f(0) = f(=d) = —nf(=d/n) + Aeg(d/n).

Subtracting these (using the fact that f(0) = 0) we obtain

fld) + f(=d) = (An — Ao)g(d/n)
= £g(d/n),
where the last line follows from the fact that g(d) is nonzero. O

It immediately follows that there can only be one nonzero number of the form g(z) up
to sign; to see why, if g(d) and g(d') are both nonzero, then for some n,n’ € Z.o we have
d/n=d/n'. But

g(d) = xg(d/n) = £g(d').

Finally, suppose that for some d,d" we have g(d) = ¢ and g(d') = —c for some nonzero c.
So we have

fld) + f(=d) = f(d) = f(=d) = 2c

which rearranges to become (f(d) — f(d')) — (f(=d') — f(—d)) = 2c.

Each of the bracketed terms must be equal to either f(d —d’) or — f(d' — d). However, they
cannot be equal since ¢ is nonzero, so g(d —d') = f(d —d’) + f(d' — d) = +2¢. This contradicts
the assertion that g(—z) = +c for all z.

Solution 3. As in Solution 1, we start by establishing Lemma 1 as above, and write f~!(z) =
—f(—=x) for the inverse of f, and g(z) = f(z) — f ().
We now prove the following.

Lemma 2. 1If g(z) # g(y), then g(z +y) = +(g(z) — g(y))-
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Proof. Assume z and y are such that g(z) # ¢(y). Applying P(z, f~1(y)) gives z + y ~
f(x) + f~(y), and applying P(f~'(x),y) gives x +y ~ f~(x) + f(y).

Observe that

By assumption, g(z) # ¢(y), and so f(z) + f~'(y) # f~'(z) + f(y). Since f is bijective,
this means that these two values must be f(x + y) and f~'(z + y) in some order, and so
g(x+y) = f(x+y)— f~'(x +y) must be their difference up to sign, which is either g(x) — g(y)

or g(y) — g(x). O

Claim. If x and ¢ are rational numbers such that g(¢) = 0 and n is an integer, then g(z + ng) =
g(x).

Proof. If g(b) = 0 and g(a) # g(a + b), then the lemma tells us that g(b) = £(g(a + b) — g(a)),

which contradicts our assumptions. Therefore, g(a) = g(a + b) whenever g(b) = 0.

A simple induction then gives that g(nb) = 0 for any positive integer n, and g(nb) = 0 for
negative n as g(x) = g(—z). The claim follows immediately. O
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Lemma 3. There cannot be both positive and negative elements in the range of g.

Proof. Suppose that g(x) > 0 and g(y) < 0. Let S be the set of numbers of the form mz + ny
for integers m,n. We first show that ¢(S) has infinitely many elements. Indeed, suppose
g(S) is finite, and let @ € S maximise ¢ and b € § maximise —¢g. Then a + b € S, and
gla+b) = g(a) — g(b) or g(b) — g(a). In the first case g(a + b) > g(a) and in the second case
g(a + b) < g(b); in either case we get a contradiction.

Now, we show that there must exist some nonzero rational number g with g(q) = 0. Indeed,
suppose first that a + f(a) = 0 for all a. Then g(a) = f(a)+ f(—a) = 0 for all a, and so g takes
no nonzero value. Otherwise, there is some a with a + f(a) # 0, and so (1) yields that f(g) =0
for ¢ = a+ f(a) # 0. Noting that f(—¢) = 0 from Lemma 1 tells us that g(q) = 0, as required.

Now, there must exist integers s and s’ such that xs = ¢s’ and integers ¢t and ¢’ such that
yt = qt’. The claim above gives that the value of g(mx + ny) depends only on the values of m
mod s and n mod t, so g(mz + ny) can only take finitely many values. ]

Finally, suppose that g(z) = v and ¢g(y) = v where u # v have the same sign. Assume
u,v > 0 (the other case is similar) and assume u > v without loss of generality.

P(f (@), [ (y)) gives z —y ~ fH(x) = [ (y) = f(z) = f(y) — (u—v), and P(z,y) gives
r—y~ f(x)— f(y). u—v is nonzero, so f(x —y) and f~(x —y) must be f(z)— f(y) — (u—")
and f(x) — f(y) in some order, and since g(x — y) must be nonnegative, we have

f@) = fy) = (u=v) =2 —y— flz) = fy).

Then, P(z —y, f~(y)) tells us that (z —y) +y ~ (f(z) = f(y)) + (f(y) —v), s0 x ~ f(z) — v,
contradicting either v # u or v > 0.

Comment. Lemma 2 also follows from f(z + d) — f(x) € {f(d), —f(—d)} as proven in Solution 2.
Indeed, we also have f(—z) — f(—x — d) € {f(d), —f(—d)}, and then subtracting the second from the
first we get g(z+d) —g(x) € {g9(d), —g(d),0}. Replacing x +d and x with = and —y gives the statement
of Lemma 2.

Comment. It is possible to prove using Lemma 2 that g must have image of the form {0, ¢, 2¢} if it
has size greater than 2. Indeed, if g(x) = ¢ and ¢(y) = d with 0 < ¢ < d, then g(x + y) = d — c as it
must be nonnegative, and ¢g(y) = g((z + y) + (—x)) = |d — 2¢| provided that d # 2c.
However, it is not possible to rule out {0, ¢, 2¢} based entirely on the conclusion of Lemma 2; indeed,

the function given by

0, if z = 2n for n e Z;

glx) =142, ifz=2n+1forneZ
1, ifz¢Z.

satisfies the conclusion of Lemma 2 (even though there is no function f giving this choice of g).

Note. Solution 1 actually implies that the result also holds over R. The proposal was originally
submitted and evaluated over QQ as it is presented here, and the Problem Selection Committee believes
that this form is more suitable for the competition because it allows for more varied and interesting
approaches once Lemma 1 has been established. Even the variant here defined over Q was found to be
fairly challenging.
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- Let p # ¢ be coprime positive integers. Determine all infinite sequences ay, as, ... of
positive integers such that the following conditions hold for all n > 1:

Max(Gp, Aty .-y Apip) — MIN(Apy Gty - ooy Qpgp) =D and
q

maX(an7 An+1s - - - 7an+q) - min(am Ant1s - - 7an+q> =

(Japan)
Answer: The only such sequences are a,, = n + C, where C' is a nonnegative integer.

Common remarks.
e Denote by af; ;) the subsequence a;, a1, ..., a;.

e Without loss of generality, in each solution we suppose p < ¢. It can be convenient to
treat the case where p = 1 separately.

e The problem can also be posed for sequences of arbitrary integers (rather than positive).
Refer to the comment after Solution 1 for a proof.

Solution 1. Let k = [1]. Note that k > 2
Lemma 1. If 7, j and m are positive integers such that [ — j| < mp then |a; — a;| < mp.

Proof. By the given condition, if |i — j| < p then |a; — a;| < p. So the lemma follows from
induction on m and the triangle inequality. O

Lemma 2. For a fixed n, suppose that a; is minimal over ¢ > n. Then ¢ <n+p— 1.

Proof. Suppose for contradiction that ¢ > n 4+ p. Then min(af—pi1q—p)) = @;. Since ¢ —p <

(k — 1)p, it follows from Lemma 1 that max(ay_p+q—p) < a; + (k — )p < a; + ¢, which is a
contradiction. ]

Lemma 3. For a fixed n > ¢, suppose that a; is maximal over i <n. Then i >n —p+ 1.

Proof. Suppose a; is minimal over j > n —¢. Then by Lemma 2, j < n—-qg+p—1. So
min(ap,—gn)) = @; and a; = max(ap,—qn]), which implies that a; > a; + ¢.

Lemma 2 also implies that if j > n then a; > min(ap,ny)). So if i < j, then we have
a; = a; — p, which contradicts a; = a; + ¢q. Hence we must have i > j.

The above inequality also gives |a; — aj| = ¢ > (k — 1)p, so by Lemma 1 it follows that
li —j| > (k—1)p. Thereforei >j+ (k—1)p=n—qg+(k—1)p=n—p+ 1. O

Let b, be the minimal value of a; for ¢ > n. By Lemma 2, b,4, > b, for all n. Hence
by, = min(ap, ,1p)) = Min(ag, »4q)- Let ¢, be the maximal value of a; for i < n. By Lemma 3,
Cn—p > ¢y for all n > ¢q. Hence ¢, = max(apn,—pn)) = max(ag,—q,) for n > gq.

So if n > q then b, = ¢4p —p = Cuiqg — q. So for n > q we get byyg—p + P = Cpig = by + ¢,
and hence b,44—p = b, +q — p.

Next note that b4, < apyp < by +p. S0 byyp—by, < pfor all n > ¢, and iterating this (¢ —p)
times gives b, pg—p) —bn < p(¢—p). But using by1q—p = by +q—p gives by yp(g—p) —bn = P(¢—p).
Since equality occurs, we must have b, = b, + p.

So for n > ¢q, byyp = b, +p and byyqp = b, + ¢ — p. Since p and ¢ — p are coprime,
bpy1 = b, + 1 for all n > ¢. The only way for b, and b, to be different is if b,, = a,,, so we
deduce that a,,1 = a, + 1 and there is a constant C' such that a, = n + C for all n > q.

Finally, suppose a, = n + C for all n > N. Then p = max(ay_1,N + C +p—1) —
min(ay_1, N+ C). Soay1 = N+C+por N+ C — 1. Similarly, ay.y = N +C + q or
N + C —1. Hence ay_1 = N + C — 1. So, by induction, we have a,, = n + C for all positive
integers n. Since a; > 1, C' is a nonnegative integer.

It is trivial to check that a,, = n + C satisfies the given condition.
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Comment. Here is a variant of Solution 1. Proceed up to proving b, — n is eventually periodic with
period g — p. Then there is some minimal value of b,, —n. Suppose n attains this minimal value. Since
bptp —m —p < b, —n, n + p also attains this minimal value. And since p and ¢ — p are coprime,
all n > ¢ must attain this minimal value. Hence b,,.1 = b,, + 1 for all n > ¢. Finish as above.

Comment. It is also possible to solve the problem using a weaker version of Lemma 2 and without
Lemma 3. For example, the following lemma plays a similar role.

Lemma 2°. Let b}, = min(ap, n4p)). Then by, < by,

Comment. To solve the problem for sequences a,, of arbitrary integers, we will use the following
lemma.

Lemma 4. The sequence a,, is either bounded above or bounded below.

Proof. Suppose that a, is unbounded above and below. Then there is some ¢ such that a; < a; — p.

There is also some j such that a; > max(a[l,i]) + ¢. Now let a; be minimal amongst af; j. Since

a; < a;, y < ayp —pand @y < aj — kp. By Lemma 1, 1 +p <1 < j — kp. So min(ap_pi4+q—p)) = @1- By

Lemma 1 again, max(ay_pj+q—p)) < @ + (K —1)p < a; + ¢, which is a contradiction. O
From there, the solution above can be adapted to prove that a,, = n+ C for all n or a,, = —n+ C

for all n, where C' can be any constant integer.

Solution 2. For n,z > 1, let the z-width of n be max(af, i) — Min(ag, i.1). We call a
positive integer x good if the z-width of n is less than or equal to x for all sufficiently large n,
and we call x very good if the x-width of n is equal to x for sufficiently large n.
Lemma 1. If p’ is good and ¢’ is very good with p’ < ¢/ < 2p/, then 2p’ — ¢ is also good.
Proof. Note that 0 < ¢ — p' < p’ < ¢'. Let n be a Suf‘ﬁciently large positive integer. Then for
keln+q —p ,n+p], wehave a = max(ap,nip) — 2 and az = maX(a[nJrqr,p/,nﬂ/]) — p’ since
p" is good, which shows aj, > max(ap,niqe1) — p'. Similarly we get ap < min(ap, nq7) + 2
Therefore, for all k € [n+4 ¢ —p',n+p'] we have aj, € [max(ap,nrq1) — P, min(ap, niq7) + ']
Thus, the (2p" — ¢)-width of n + ¢’ — p' is at most (min(apn+q) + ') — (Max(apn+qy) — 1) =
2p" — ¢'. The lemma follows. O]

Lemma 2. Let p’ be a good number and ¢’ a very good number with p’ < ¢'. For sufficiently
large n, take s,t € [n,n + ¢'] such that min(ap, ,1¢)) = as and max(apniq)) = @ Then
se[n,n+plandten+q¢ —p,n+].

Proof. Lemma 2 and Lemma 3 from Solution 1 hold with p and ¢ replaced by p’ and ¢’ by
similar arguments. We can deduce the statement about s from Lemma 2 of Solution 1. We can
deduce the statement about ¢ from Lemma 3 of Solution 1. OJ

Lemma 3. If p’ is good and ¢’ is very good with 2p’ < ¢/, then there exists a positive integer r
such that for all sufficiently large n, we have a,, —a, = r.

Proof. Let r = ¢’ — 2p/, and let s and t be as defined in Lemma 2. Then consider the identity
(at - anﬂ]’*p’) + (an+p’+r - an+p’) + (anﬂ)’ - as) =ay — g = q/-

By Lemma 2, we have s € [n,n+pland t € [n+¢ —p',n+ ], s0 apipy —s < p and
at — Apiq—py < p'. Combining these, we get anipyir — Gnsy = ¢ — 2p" = r. This proves that
Gpyr — @y = 1 for sufficiently large n. O

Lemma 4. Suppose (p,q) # (1,2). Then there exists a good number p’ such that 2p’ < g.

Proof. Let p’ be the smallest good positive integer. Note that p is good, so p’ exists and is less
than q.

Suppose for contradiction that 2p’ > ¢. If 2p’ > ¢, then by Lemma 1, 2p’ — ¢ is a good
number strictly less than p’, which contradicts minimality of p’. If 2p’ = ¢, then p’ < p < 2p'.
So we can apply Lemma 1 with ¢y = p to get that 2p’ — p is a good number that is strictly less
than p/, which again contradicts minimality. O
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If (p,q) = (1,2) then the problem is easily solved. Otherwise, Lemmas 3 and 4 combined
give us some r > 0 such that a,,, — a, = r for n sufficiently large.

By iterating, we get a1, — a, = pr for all sufficiently large n, and hence it follows that
Qpip — A, = p. Similarly we get a,+y — a, = ¢. As p and ¢ are coprime, we deduce that
apy1 — a, = 1 for sufficiently large n. Thus we get a,, = n + C for sufficiently large n, and we
can conclude by the same argument as Solution 1.
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Combinatorics

Let n be a positive integer. A class of n students run n races, in each of which they
are ranked with no draws. A student is eligible for a rating (a,b) for positive integers a and b
if they come in the top b places in at least a of the races. Their final score is the maximum
possible value of a — b across all ratings for which they are eligible.

Find the maximum possible sum of all the scores of the n students.
(Australia)

n(n—1)
5

Answer: The maximum possible sum is

Solution 1. The answer can be achieved by the students finishing in the same order in every
race. To show that this is the maximum, we will apply a series of modifications to the results of
the races, each of which does not decrease the total score, such that after & such modifications
the first & positions are the same in every race. Say that a student is scored on the b'" place
if their score is @ — b because they came in the top b places in a of the races and b is minimal
with this property for that student.

Supposing that the first £k — 1 positions are the same in every race, look at the students
scored on the k" place. If there are no such students, let £ > k be minimal such that some
student S is scored on the ¢*" place. Then, in every race where S appears in any place from
the k" through the /' inclusive (of which there must be at least ¢, otherwise S would achieve
a higher rating of 0 based on the n'® place), reorder the students in places k through ¢ so that
S finishes in the &*® place instead (and otherwise the ordering of those students is arbitrary).
Now S is scored on the k" place, their score has gone up by ¢ — k and no other scores have
gone down (some might have gone up as well).

Now we know that the first £ — 1 positions are the same in every race and at least one
student is scored on the k' place. Pick one such student S. In each race where S finishes
behind the k' place, swap them with the student 7" who finishes in the k*" place, leaving the
positions of all other students unchanged. Each such swap increases the score of S by 1 and
decreases the score of T" by at most 1, so such swaps do not decrease the total score. At the
end of this process, the first k& positions are the same in every race and the total score has not
decreased.

Repeating this n times yields the required result.

Comment. The following simpler approach to modifying results of races is tempting: find pairs of
students S and T who are scored on places k and ¢ respectively, where & < ¢, but where S finishes
after T' in some race, and swap the positions of those two students in that race so they finish in the
same order as the places they are scored on. However, such a swap can decrease the total score; for
example, suppose that &k = 1 and ¢ = 4, and in some race S finishes 6" and T finishes 3"; then
swapping those students reduces the number of races contributing to 71”’s score without increasing the
number contributing to S’s score.

Solution 2. The answer can be achieved by having the same ranking for all n races.
Note that taking a = b = n shows each student has a nonnegative score. Consider a student
who has race ranks rq, o, ..., r, and a final score of s. We first prove that

Zri <n(n—s).

Without loss of generality, suppose that r; < ry < --- < r,. There must exist some k£ with
s+1<k<nand k—r; =s. In order to maximise ), r; while retaining the score of s, we can
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replace each of r1, ..., r._1 by r, and replace each of 4,1, ..., r, by n. Then the sum is

Zn kry+(n—kn=n*>~k(n—ry) =n*—k(n+s—k)<n®>—s,. (1)

The final inequality follows from the fact that given s + 1 < k < n, the quantity k(n + s — k)
is minimised when k = n.

The sum of ranks of all students across all races is
is ¢, then (1) implies

%. If the total of all student scores
2

+1

Qgrlgﬁ_m

n(n—1)
2

This rearranges to t < , as required.

Solution 3. In each race, assign the student in the £ place a weight of 1 — % If a student
finishes in the top b places in at least a of the races, the total of their weights is at least
a (1 — %) =a—> (%) > a — b. Thus the sum of a student’s weights across all races is at least
their score, and so the sum of all weights for all students across all races is at least the sum of
all the scores of all students. The sum of weights in each race is "T_l, so the sum of all weights
across all races is @ Equality is achieved if and only if, for each student, the values of b
and a determining that student’s score have a = n and they finish in exactly the b place in

all n races; that is, if the students are ranked the same in every race.

Solution 4. Given a positive integer b(.S) for each student S, define a,(.S) to be the number
of races in which S finished in the top b(S) places, and define score,(S) = a,(S) — b(S); for a
race 1, let I(S,r) be 1 if S finished in the top b(S) places in race r and 0 otherwise, so

= Zlb(S, ’l“).

Then the problem asks for the maximum across all possible results of the races of

max Y scorey(S) max L,(S,7) b(S) | .
i =g (S a6 T

Given b, the sum ¢ I;(S,r) is maximised (not necessarily uniquely) for some choice of the
rankings in race r, which is the same choice for every race. So the maximum possible sum of
the scores of all the students occurs when all students are ranked the same in all races, which
yields the given answer.
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Let n be a positive integer. The integers 1, 2, 3, ..., n? are to be written in the cells
of an n x n board such that each integer is written in exactly one cell and each cell contains
exactly one integer. For every integer d with d | n, the d-division of the board is the division
of the board into (n/d)? nonoverlapping sub-boards, each of size d x d, such that each cell is
contained in exactly one d x d sub-board.

We say that n is a cool number if the integers can be written on the n x n board such that,
for each integer d with d | n and 1 < d < n, in the d-division of the board, the sum of the
integers written in each d x d sub-board is not a multiple of d.

Determine all even cool numbers.
(Tiirkiye)

Answer: The even cool numbers are n = 2¥ where k is a positive integer.

Solution. We first show by induction that n = 2* is a cool number. The base case of n = 2 is
trivial as there is no such d.

For induction, assume that 2* is a cool number. We construct a numbering of a 2¢1 x 2k+1
board that satisfies the conditions.

Take the 281 x 25! hoard and divide it into four 2% x 2% sub-boards. By assumption, there
is some numbering P of a 2¥ x 2* board that satisfies the required condition; we write down the
numbering P in each sub-board. Next, add 2% to every number in the second sub-board, add
2 x 22% to every number in the third sub-board, and add 3 x 2% to every number in the fourth
sub-board. Then the numbers in the cells of the 251 x 2¥+1 hoard are the numbers 1 to 22(:+1).

Now locate 22 from the first sub-board, and swap it with 22* + 2¥=1 from the second sub-
board. Locate 3 x 22 from the third sub-board, and swap it with 3 x 22¥ 428~ from the fourth
sub-board.

We claim that this numbering of the 28+ x 25! hoard satisfies the required conditions. For
any d = 2° where i < k, consider any 2¢ x 2¢ sub-board. The sum of its cells modulo 2 is not
changed in the addition step or the swapping step, so the sum is congruent modulo 2° to the
sum of the corresponding 2¢ x 2¢ sub-board in P, which is nonzero, as required.

In the case of d = 2* we can directly evaluate the sum of the (b + 1)*® sub-board for
be {0,1,2,3}. The sum is given by

22k—1(1 + 22k‘) + 624k + (_1)b2k—1 = 2k—1 (mOd 2k)

Therefore all sub-boards satisfy the required conditions and so 2¥*! is a cool number, completing
the induction.

It remains to show that no other even number is a cool number. Let n = 2°m where s is a
positive integer and m is an odd integer greater than 1. For the sake of contradiction, suppose
that there is a numbering of the n x n board satisfying the required conditions.

Claim. In the 2'-division of the board, where 1 < 7 < s, the sum of numbers in each 2¢ x 2!
sub-board is congruent to 2=! modulo 2¢.

Proof. We prove the claim by induction on ¢. The base case of i = 1 holds as the sum of
numbers in each 2 x 2 sub-board must be odd. Next, suppose the claim is true for 2°. In the
21T division, each 2i7! x 27! sub-board is made up of four 2% x 2¢ sub-boards, each with a sum
congruent to 2°=! modulo 2. Hence the sum of each 2! x 2¢*1 sub-board is a multiple of 2.
It cannot be a multiple of 2:*! because of the conditions, which means it must be congruent to
2¢ modulo 2+, This proves the claim. ]
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Back to the problem, since m is odd, summing up the m? sums of 2° x 2° sub-boards gives
25 Im? = 2571 (mod 2°).
However, the sum of the numbers from 1 to n? is

2/ 2
+1

) (n2 ) = 225_17712(2257712 +1)=0 (mod 2°).

This is a contradiction. Therefore n is not a cool number.

Comment. In the case of odd n, similar arguments show that prime powers are cool numbers.
If the definition of cool numbers additionally requires that all d x d sub-boards in the d-division
have the same nonzero residue modulo d, then the cool numbers are precisely the prime powers.
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Let n be a positive integer. There are 2n knights sitting at a round table. They
consist of n pairs of partners, each pair of which wishes to shake hands. A pair can shake hands
only when next to each other. Every minute, one pair of adjacent knights swaps places.

Find the minimum number of exchanges of adjacent knights such that, regardless of the
initial arrangement, every knight can meet her partner and shake hands at some time.
(Belarus)

n(n—1)
2

Answer: The minimum number of exchanges is

Common remarks. The solution is divided into three lemmas. We provide multiple proofs
of each lemma.

Solution. Join each pair of knights with a chord across the table. We’ll refer to these chords
as chains.

First we show that n(n — 1)/2 exchanges are required for some arrangements.

Lemma 1. If each knight is initially sitting directly opposite her partner, then at least n(n—1)/2
exchanges are required for all knights to meet and shake hands with their partners.

Proof 1. 1In this arrangement any two chains are initially intersecting. For two knights to be
adjacent to each other, it is necessary that their chain does not cross any other chain, and thus
every pair of chains must be uncrossed at some time. Each exchange of adjacent knights can
only uncross a single pair of intersecting chains, and thus the number of exchanges required is
at least the number of pairs of chains, which is n(n — 1)/2. 0

Proof 2. In this arrangement the two knights in each pair are initially separated by n — 1 seats
in either direction around the table, and so each pair must move a total of at least n — 1 steps
so as to be adjacent. There are n pairs, and each exchange moves two knights by a single step.
Hence at least n(n — 1)/2 moves are required. O

We will now prove that n(n —1)/2 exchanges is sufficient in all cases. We'll prove a stronger
version of this bound than is required, namely that every knight can shake hands with her
partner at the end, after all exchanges have finished.

Begin by adding a pillar at the centre of the table. For each chain that passes through the
centre of the table, we arbitrarily choose one side of the chain and say that the pillar lies on
that side of the chain. While the pillar may lie on a chain, we will never move a knight if that
causes the pillar to cross to the other side of a chain. Say that a chain passes in front of a
knight if it passes between that knight and the pillar, and define the length of a chain to be
the number of knights it passes in front of. Then each chain has a length between 0 and n — 1
inclusive.

Say that a chain C encloses another chain C” if C' and C” do not cross, and C' passes between
C’ and the pillar. Say that two chains are intersecting if they cross on the table; enclosing if
one chain encloses the other; and disjoint otherwise. Let k, [ and m denote respectively the
number of enclosing, intersecting and disjoint pairs of chains. Then we have

n(n—l).

k+1 =
+i+m 5
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Lemma 2. 2k + | exchanges are sufficient to reach a position with all pairs of knights sitting
adjacent to each other.

Proof 1. We proceed by induction on 2k + [.

If every chain has length 0, then every pair of knights is adjacent and the statement is
trivial.

Otherwise, let A and B be a pair of knights whose chain Cj has length ¢ > 1. Let Sy = A,
and let Sy, ..., S, be the knights which Cj passes in front of, sitting in that order from A to B.
We know that Cj passes in front of Sy, and there are three cases for the chain C'; for knight S;.

If C; passes in front of Sy then Cy and C are intersecting, and we can make them disjoint
by exchanging the positions of Sy and S;. This reduces the sum 2k + [ by 1.

If C; passes in front of neither Sy nor B then (] is enclosed by Cy, and we can swap Sy
and S; to make Cy and C] an intersecting pair. This increases [ by 1 and decreases k
by 1, and hence reduces the sum 2k + [ by 1.

If this ) passes in front of B then we cannot immediately find a beneficial exchange.

In the third case, we look instead at the knights S; and S; 1, for each ¢ in turn. Each time,
we will either find a beneficial exchange, or find that the chain C;,; for knight S;,; passes in
front of B. Eventually we will either find a beneficial exchange in one of the first two cases
above, or we will find that the chain C, for S, passes in front of B, in which case C, and Cy
are intersecting and we can make C, and Cj disjoint by swapping S, and B.

Also note that the only times a chain is increased in length is when it is enclosed by another
chain. But this cannot happen for a chain containing the pillar, so no chains ever cross the
pillar. (]

Proof 2. We begin by ignoring the seats, and let each knight walk freely to a predetermined
destination. Each pair of knights will walk around the table to one of the two points on the
circumference midway between their initial locations, such that the chain between them passes
between the pillar and the destination. If more than one pair of knights would have the same
destination point, then we make small adjustments to the destination points so that each pair
has a distinct destination point.

We then imagine each knight walking at a constant speed (which may be different for each
knight). They all start and stop walking at the same time. We want to count how many times
two knights pass (either in opposite directions, or in the same direction but at different speeds).
For any two pairs of knights, the number of passes depends on the relation between their two
chains.

If their two chains are intersecting then there will be one pass, involving the two knights
for whom the other chain passes between them and the pillar.

If their two chains are enclosing then there will be two passes, with one of the knights
with the enclosing chain passing both of the knights with the shorter enclosed chain.

If their two chains are disjoint then there will be no passes.

The number of passes is therefore 2k +[. If multiple pairs of knights would pass at the same
time, we can slightly adjust the walking speeds so that the passes happen at distinct times.
We can then convert this sequence of passes into a sequence of seat exchanges in the original
problem, which shows that 2k + [ exchanges is sufficient. ]
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Lemma 3. k < m.

Proof 1. We proceed by induction on n. The base case n = 2 is clear.

Consider a chain C' of greatest length, and suppose it joins knights A and B. Let x be the
number of chains that intersect C, and let y be the number of chains that are enclosed by C'.
Note that no chain can enclose C'. Then C passes in front of one knight from each pair whose
chain intersects C', and both knights in any pair whose chain is enclosed by C. Thus the length
of C'is x 4+ 2y < n — 1. The number of chains that form a disjoint pair with C' is then

n—1l—-z—y=(x+2y —z—y=uy.

Now we can remove A and B and use the induction hypothesis. We need to show that the
length of each remaining chain is at most n — 2 so the chains remain valid. No chain increases
in length after removing A and B. If any chain C' had length n — 1, then the chain between A
and B also had length n — 1. Then C must have passed in front of exactly one of A or B, and
so has length n — 2 after removing A and B. OJ

Proof 2. Let ko denote the number of chains C” such that C' encloses C".

Note that if C' encloses C”, then ko < k¢

First we will show that there at least k¢ chains that are disjoint from C'. Let x be the length
of C, let S be the set of x knights that C' passes in front of, and let 7 be the set of x knights
sitting directly opposite them. None of the knights in 7 can have a chain that encloses or is
enclosed by C, and if any knight in 7 has a chain that intersects C', then her partner must be
a knight in S. So we have that

2kec = number of knights in S whose chain is enclosed by C
= x — number of knights in & whose chain intersects C'
< x — number of knights in 7 whose chain intersects C'
< number of knights in 7 whose chain is disjoint from C
<

2 x number of chains that are disjoint from C.

Now let m¢ denote the number of chains C” with C' and C” disjoint, and k¢ < ko. We will
show that m¢ = ke.

Let R be a set of ko chains that are disjoint from C, such that Y ., kv is minimal. If
every chain C' € R has k¢ < ke, then we are done. Otherwise, let consider a chain C” with
kcr = ke. There are then at least ko chains C” for which the chain C” passes between C” and
the pillar. Each of these chains must have kcv < ko, and at least one of them is not in R
(otherwise R would contain C” and at least ko other chains), so we can swap this chain with C”
to obtain a set R’ with >, cp/ kv < Xcier ker. But this contradicts the minimality of R.

We finish by summing these inequalities over all chains C"

k=>"ke <Y me <m. =
C C

By Lemma 3, we have that 2k +1 < k+1+m = n(n—1)/2. Combining this with Lemma 2,
we have that n(n — 1)/2 exchanges is enough to reach an arrangement where every knight is
sitting next to her partner, as desired.

Comment. Either proof of Lemma 3 can be adapted to show that the configuration in Lemma 1 is
the only one which achieves the bound.
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On a board with 2024 rows and 2023 columns, Turbo the snail tries to move from
the first row to the last row. On each attempt, he chooses to start on any cell in the first row,
then moves one step at a time to an adjacent cell sharing a common side. He wins if he reaches
any cell in the last row. However, there are 2022 predetermined, hidden monsters in 2022 of
the cells, one in each row except the first and last rows, such that no two monsters share the
same column. If Turbo unfortunately reaches a cell with a monster, his attempt ends and he
is transported back to the first row to start a new attempt. The monsters do not move.

Suppose Turbo is allowed to take n attempts. Determine the minimum value of n for which
he has a strategy that guarantees reaching the last row, regardless of the locations of the
monsters.

(Hong Kong)

Comment. One of the main difficulties of solving this question is in determining the correct expression
for n. Students may spend a long time attempting to prove bounds for the wrong value for n before
finding better strategies.

Students may incorrectly assume that Turbo is not allowed to backtrack to squares he has already
visited within a single attempt. Fortunately, making this assumption does not change the answer to
the problem, though it may make it slightly harder to find a winning strategy.

Answer: The answer is n = 3.

Solution. First we demonstrate that there is no winning strategy if Turbo has 2 attempts.

Suppose that (2,4) is the first cell in the second row that Turbo reaches on his first attempt.
There can be a monster in this cell, in which case Turbo must return to the first row immediately,
and he cannot have reached any other cells past the first row.

Next, suppose that (3, 7) is the first cell in the third row that Turbo reaches on his second
attempt. Turbo must have moved to this cell from (2, j), so we know j # i. So it is possible that
there is a monster on (3,7), in which case Turbo also fails on his second attempt. Therefore
Turbo cannot guarantee to reach the last row in 2 attempts.

Next, we exhibit a strategy for n = 3. On the first attempt, Turbo travels along the path
(1,1) - (2,1) = (2,2) - --- — (2,2023).

This path meets every cell in the second row, so Turbo will find the monster in row 2 and his
attempt will end.

If the monster in the second row is not on the edge of the board (that is, it is in cell (2,1)
with 2 < i < 2022), then Turbo takes the following two paths in his second and third attempts:

(1i—1) > (2,i—1) > (3,i— 1) > (3,i) — (4,i) — --- — (2024, 7).
(Li+1) > (2,i+1) = (3,i+1) = (3,i) — (4,1) — --- — (2024, ).

The only cells that may contain monsters in either of these paths are (3,7 — 1) and (3,7 + 1).
At most one of these can contain a monster, so at least one of the two paths will be successful.
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| |

Figure 1: Turbo’s first attempt, and his second and third attempts in the case where the
monster on the second row is not on the edge. The cross indicates the location of a monster,
and the shaded cells are cells guaranteed to not contain a monster.

If the monster in the second row is on the edge of the board, without loss of generality we
may assume it is in (2, 1). Then, on the second attempt, Turbo takes the following path:

(1,2) — (2,2) — (2,3) — (3,3) — --- — (2022,2023) — (2023, 2023) — (2024, 2023).

Figure 2: Turbo’s second and third attempts in the case where the monster on the second row
is on the edge. The light gray cells on the right diagram indicate cells that were visited on the
previous attempt. Note that not all safe cells have been shaded.

If there are no monsters on this path, then Turbo wins. Otherwise, let (4, j) be the first cell
on which Turbo encounters a monster. We have that 7 = 7 or 5 = ¢ + 1. Then, on the third
attempt, Turbo takes the following path:

(1,2) > (2,2) > (2,3) > (3,3) > -+ > (i—2,i—1) > (i —1,i— 1)
- (i,i—1) > (1,0 —2) > - > (i,2) > (i, 1)
— (i+1,1) - -+ — (2023,1) — (2024, 1).
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Now note that

e The cells from (1,2) to (i — 1,7 — 1) do not contain monsters because they were reached
earlier than (7, j) on the previous attempt.

e The cells (i,k) for 1 < k < i — 1 do not contain monsters because there is only one
monster in row 4, and it lies in (¢,) or (i,i + 1).

e The cells (k,1) for i < k < 2024 do not contain monsters because there is at most one
monster in column 1, and it lies in (2, 1).

Therefore Turbo will win on the third attempt.

Comment. A small variation on Turbo’s strategy when the monster on the second row is on the edge
is possible. On the second attempt, Turbo can instead take the path

(1,2023) — (2,2023) — (2,2022) — -+ — (2,3) = (2,2) — (2,3) — - -+ — (2,2023)
— (3,2023) — (3,2022) — --- — (3,4) — (3,3) — (3,4) > --- — (3,2023)
— (2022,2023) — (2022,2022) — (2022, 2023)
— (2023, 2023)
— (2024, 2023).

~—

If there is a monster on this path, say in cell (7, j), then on the third attempt Turbo can travel straight
down to the cell just left of the monster instead of following the path traced out in the second attempt.

Li-1)—>2j-1)—>- = (-1j-1)—(@j-1)
= (6,j—2) == (,2) = (i, 1)
— (i+1,1) = - — (2023,1) — (2024, 1).

Figure 3: Alternative strategy for Turbo’s second and third attempts.
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Let N be a positive integer. Geoff and Ceri play a game in which they start by writing
the numbers 1, 2, ..., N on a board. They then take turns to make a move, starting with
Geoff. Each move consists of choosing a pair of integers (k,n), where k > 0 and n is one of the
integers on the board, and then erasing every integer s on the board such that 2% | n — s. The
game continues until the board is empty. The player who erases the last integer on the board
loses.

Determine all values of N for which Geoff can ensure that he wins, no matter how Ceri

plays.
(Indonesia)

Answer: The answer is that Geoff wins when N is of the form 2" for n odd or of the form t2"
for n even and ¢ > 1 odd.

Common remarks. We will say that a set S wins if the current player wins given S as the
current set of integers on the board. Otherwise, we will say that S loses.

We will let J(S,7) = (25—1)u(2T). Note that every subset of Z can be written as J(S,T)
for some unique pair (S,7) of subsets of Z.

We will let [n] denote the set {1,2,...,n}.

Solution.

Lemma 1. For any set S, S wins if and only if J(S, ) wins. Similarly, S wins if and only if
J(,S) wins.
Proof. Let (k, m) be a move on S, and let T be the result of applying the move. Then we can
reduce J(S, ) to J(T, ) by applying the move (k + 1,2m — 1).
Conversely, let (k,m) be a move on J(S, ). We can express the result of this move as
J(T, &) for some T. Then we can reduce S to T by applying the move (max(k—1,0), (k+1)/2).
This gives us a natural bijection between games starting with S and games starting with
J(S, ) and thus proves the first part of the lemma. The second part follows by a similar
argument. ]

Lemma 2. 1f S and T are nonempty and at least one of them loses, then J(S,7T) wins.

Proof. If S is losing, then we can delete J(J,T) using the move (1,t) for some t € J(J,T),
which leaves the losing set J(S, ). Similarly, if 7 is losing, then we can delete J(S, &) using
the move (1, s) for some s € J(S, &), leaving the losing set J(F, T). O

Lemma 3. If § is nonempty and wins, then J(S,S) loses.

Proof. From this position, we can convert any sequence of moves into another valid sequence of
moves by replacing (k, 2n—1) with (k, 2n), and vice versa. Thus we may assume that the initial
move (k, m) has m odd. We want to show that any such move results in a winning position for
the other player.

The move (0,m) loses immediately. Otherwise, the move results in the set J(7,S) for some
set 7. There are three cases.

If 7 is empty then the other player gets the winning set J(&,S).

If 7 is losing then the other player can choose the move (1, s) for some s € J(&F,S), which
leaves the losing set J(T, ).

If 7 is nonempty winning then the other player can choose the move (k,m + 1), which
results in the position J(7,7). We can then proceed by induction on |S| to show that
this is a losing set. ]
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Lemma /4. [2n] wins if and only if [n] loses.

Proof. Note that [2n] = J([n],[n]). The result then follows directly from the previous two
lemmas. 0

Lemma 5. For any integer n > 1, [2n + 1] wins.

Proof. By Lemma 4, either [n] or [2n] loses. If [n] loses, then by Lemma 2 we have that
[2n + 1] = J([n + 1], [n]) wins. Otherwise, [2n] loses, and therefore [2n + 1] wins by choosing
the move (k,2n + 1) for sufficiently large k so that only 2n + 1 is eliminated. O

It remains to verify the original answer. We have two cases to consider:

e Suppose N = 2" for some n. For N = 1, every move is an instant loss for Geoff. Then
by Lemma 4, Geoff wins for N = 2" if and only if Geoff loses for N = 2"!, and thus by
induction we have that Geoff wins for N = 2" if and only if n is odd.

e Otherwise, N = t2", for some n and some ¢t > 1 with ¢t odd. By Lemma 5, Geoff wins
when n = 0. Then by Lemma 4, Geoff wins for N = ¢2" if and only if Geoff loses for
N = t2""! and thus by induction on n we have that Geoff wins for N = 2" if and only
if n is even.

Comment. We can represent this game as a game on partial binary trees. This representation could
be common in rough working, as it facilitates exploration of small cases. If two sets produce trees
which are topologically equivalent, then this equivalence leads to a natural bijection between games
starting with the two sets. Such equivalences lead to a significant reduction in the number of distinct
cases that need to be considered when exploring the game for small V.

The construction is as follows. First we begin by considering an infinite binary tree. For each
positive integer n, we consider the binary representation of n — 1, starting with the least significant
bit and ending with an infinite sequence of leading zeroes. We map this sequence of bits to a path
on the binary tree by starting at the root, and then repeatedly choosing the left child if the bit is 0
and the right child if the bit is 1. We can then truncate each path after reaching a sufficient depth to
distinguish the path from all other paths in the tree.

Valid moves in this representation of the game consist of selecting a node with two children, and
removing either the left child or the right child (and its descendants). Selecting and removing the
entire graph is also an allowed move (which loses instantly).

Two trees have equivalent games if they’re topologically identical. This equivalence includes swap-
ping the left and right children of any single node, or removing a node with a single child by merging
the edges above and below it (and decreasing the depth of its children by one).
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Comment. We can also analyse this game using Grundy values (also known as nim-values or nimbers).
This requires a slight modification to the rules, wherein any move that would erase all integers on the
board is disallowed, and the first player who cannot move loses. This is clearly equivalent to the
original game.

Let g(S) denote the Grundy value of the game starting with the set S. Note that the bijection in
Lemma 1 shows that

9(8) = 9(J(S,2)) = 9(J(,S))-

For any set V, let mex(V') denote the least nonnegative element that is not an element of V. For
nonnegative integers x and y, define j(z,y) recursively as

j(a,y) = mex({z,y} v {j(w,y) [w <zt v {i(z,2) | 2 <y}).

The values of j(x,y) for small z and y are:

516 7 8 9 1 0
415 3 6 2 0 1
314 5 1 0 2 9
213 4 01 6 8
1172 0 4 5 3 7
011 2 3 4 5 6
— 10 1 2 3 4 5

We can show that g(J(S,T)) = j(g(S),g(T)) for any nonempty sets S and 7. The remainder of
the proof follows a similar structure to the given solution.
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Let n and T" be positive integers. James has 4n marbles with weights 1, 2, ..., 4n.
He places them on a balance scale, so that both sides have equal weight. Andrew may move a
marble from one side of the scale to the other, so that the absolute difference in weights of the
two sides remains at most 7.

Find, in terms of n, the minimum positive integer 7" such that Andrew may make a sequence
of moves such that each marble ends up on the opposite side of the scale, regardless of how

James initially placed the marbles.
(Ghana)

Answer: The minimum value of T is 4n.

Solution 1. We must have T > 4n, as otherwise we can never move the marble of weight 4n.
We will show that T" = 4n by showing that, for any initial configuration, there is a sequence
of moves, never increasing the absolute value of the difference above 4n, that results in every
marble ending up on the opposite side of the scale. Because moves are reversible, it suffices to
do the following: exhibit at least one configuration C' for which this can be achieved, and show
that any initial configuration can reach such a configuration C' by some sequence of moves.

Consider partitioning the weights into pairs (t,4n + 1 — ). Suppose that each side of the
balance contains n of those pairs. If one side of the balance contains the pair (¢t,4n + 1 — t)
for 1 <t < 2n and the other side contains (2n,2n + 1), then the following sequence of moves
swaps those pairs between the sides without ever increasing the absolute value of the difference
above 4n.

t,dn+1—1t|2n,2n+1 (1)
t.2n,dn+1—t|2n+1 (2)
t,2n|2n+ 1,4n +1 —t (3)
t,2n,2n+1|4n+1—1t (4)
2n,2n+ 1|t dn+1—1t (5)

Applying this sequence twice swaps any two pairs (t,4n + 1 —t) and (#',4n + 1 — t') between
the sides. So we can achieve an arbitrary exchange of pairs between the sides, and C' can be
any configuration where each side of the balance contains n of those pairs.

We now show that any initial configuration can reach one where each side has n of those
pairs. Consider a configuration where one side has total weight A — s and the other has total
weight A + s, for some 0 < s < 2n, and where some pair is split between the two sides. (If
no pair is split between the two sides, they must have equal weights and we are done.) Valid
moves include moving any weight w with 1 < w < 2n + s from the A + s side to the A — s side,
and moving any weight w with 1 < w < 2n — s from the A — s side to the A + s side. Suppose
the pair (¢,4n + 1 —t), with ¢t < 2n, is split between the sides. If ¢ is on the A + s side, or
on the A — s side and t < 2n — s, it can be moved to the other side. Otherwise, ¢ is on the
A—ssideandt >2n—s+1,s04n+1—1t < 2n + s is on the A + s side and can be moved
to the other side. So we can unite the two weights from that pair without splitting any other
pair, and repeating this we reach a configuration where no pair is split between the sides.

Solution 2. As in Solution 1, T' > 4n. Let 0 be the weight of the left side minus the weight
of the right side. A configuration is called legal if |§| < 4n, and a move is legal if it results in
a legal configuration. We will show that if § = 0 then there is a sequence of legal moves after
which every marble is on the opposite side.

We treat the n = 1 case separately. The initial configuration has marbles 1, 4 on one side
and 2, 3 on the other. So moving marbles 2, 4, 3, 1 in that order is legal and every marble ends
on the opposite side. Now assume n > 2.
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Marbles of weight at most 2n are called small. We will make use of the following lemmas:

Lemma 1. If a pair of legal configurations differ only in the locations of small marbles then
there is a sequence of legal moves to get from one to the other.

Proof. At first we only move marbles in the wrong position if they are not on the lighter side.
(In the case of a tie, neither side is lighter.) Such a move is always legal. Since this reduces the
number of marbles in the wrong position, eventually it will no longer be possible to perform
such a move.

Then the only marbles in the wrong position are on the lighter side. So moving one marble
in the wrong position at a time will always increase |4, and |§| < 4n at the end. Hence every
move is legal. |

Lemma 2. Let k € N. A positive integer can be expressed as a sum of distinct positive integers
up to k if and only if it is at most k(k + 1)/2.

Proof. The maximum possible sum of distinct positive integers up to k is k(k + 1)/2. For the
other direction we use induction on k. The case k = 1 is trivial. Assume the statement is
true for k£ — 1. For positive integers up to k we only need a single term. For larger integers,
including k in the expression means we are done by the inductive hypothesis. ]

Also note that n(2n + 1) = 4n for n > 2.

Let 2n < m < 4n. Marbles of weight greater than m are called big and marbles from 2n + 1
to m are called medium.

Suppose all big marbles are on the correct side (that is, opposite where they started), m is
on the incorrect side and the configuration is legal. Then the following steps give a sequence
of legal moves after which m is on the correct side and the big marbles were never moved.

Assume m is on the left. In Step 2, we rearrange the small marbles so we can move m. But
this is only possible if the weight of big and medium marbles on the right is not too large. So
we may need to move some medium marbles from the right first, which we do in Step 1.

Step 1 Skip to Step 2 if the total weight of medium and big marbles on the right side is at
most n(4n + 1) + 2n — m. Since the big marbles are in the correct position and m is in
the incorrect position, the big marbles on the right can weigh at most n(4n + 1) —m. So
there must be a medium marble m’ < m on the right.

From the first assumption, it is legal to move all small marbles to the left. Then by
Lemma 2 we can move some of the small marbles to the right so the right side has weight
exactly n(4n + 1) + 2n. Then moving m’ is legal. Repeat this step. Since the total weight
of medium marbles on the right decreases, this step will occur a bounded number of times.

Step 2 Let the total weight of the right side be n(4n + 1) +2n —m + = and the weight of small
marbles on the right side be y. Note that y > x. If < 0 then moving m is legal.

Otherwise, by Lemma 2 there is a set of small marbles of weight y — z. By Lemma 1,
there is a sequence of legal moves of small marbles such that the right side has weight
exactly n(4n + 1) + 2n — m. Now moving m is legal.

Applying the process above for m = 4n, 4n — 1, ..., 2n + 1 will move all nonsmall marbles
to the opposite side. Then Lemma 1 completes the proof.
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Let N be a positive integer and let ay, as, ... be an infinite sequence of positive
integers. Suppose that, for each n > N, a,, is equal to the number of times a,,_; appears in the
list ay, as, ..., ap_1.

Prove that at least one of the sequences ai, as, as, ... and as, a4, ag, ... is eventually
periodic.

(Australia)

Solution 1. Let M > max(aq,...,ay). We first prove that some integer appears infinitely

many times. If not, then the sequence contains arbitrarily large integers. The first time each
integer larger than M appears, it is followed by a 1. So 1 appears infinitely many times, which
is a contradiction.

Now we prove that every integer x > M appears at most M — 1 times. If not, consider the
first time that any = > M appears for the M*™ time. Up to this point, each appearance of z is
preceded by an integer which has appeared x > M times. So there must have been at least M
numbers that have already appeared at least M times before x does, which is a contradiction.

Thus there are only finitely many numbers that appear infinitely many times. Let the largest
of these be k. Since k appears infinitely many times there must be infinitely many integers
greater than M which appear at least k£ times in the sequence, so each integer 1, 2, ..., k —1
also appears infinitely many times. Since k + 1 doesn’t appear infinitely often there must only
be finitely many numbers which appear more than k times. Let the largest such number be
[ = k. From here on we call an integer = big if x > [, medium if | = x > k and small if x < k.
To summarise, each small number appears infinitely many times in the sequence, while each
big number appears at most k times in the sequence.

Choose a large enough N’ > N such that ay- is small, and in aq, ..., ay:

e every medium number has already made all of its appearances;
e every small number has made more than max(k, N) appearances.

Since every small number has appeared more than k£ times, past this point each small number
must be followed by a big number. Also, by definition each big number appears at most k
times, so it must be followed by a small number. Hence the sequence alternates between big
and small numbers after ay.

Lemma 1. Let g be a big number that appears after ay:. If g is followed by the small number h,
then h equals the amount of small numbers which have appeared at least g times before that
point.

Proof. By the definition of N’; the small number immediately preceding g has appeared more
than max(k, N) times, so g > max(k, N). And since g > N, the g'" appearance of every small
number must occur after ay and hence is followed by ¢g. Since there are k£ small numbers and
g appears at most k times, g must appear exactly k times, always following a small number
after an. Hence on the h" appearance of ¢, exactly h small numbers have appeared at least g
times before that point. O

Denote by a; ;) the subsequence a;, a;i1, ..., a;.

Lemma 2. Suppose that ¢ and j satisfy the following conditions:
(a) j>i>N+2,

(b) a; is small and a; = aj,

(c) no small value appears more than once in af; ;1.

Then a;_; is equal to some small number in af; j_1.
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Proof. Let T be the set of small numbers that appear at least a;_; times in af; ;1. By Lemma 1,
a; = |Z|. Similarly, let 7 be the set of small numbers that appear at least a;_; times in ap; ;1]
Then by Lemma 1, a; = |J| and hence by (b), |Z| = |J|. Also by definition, a;_, € Z and
aj—2 € J.

Suppose the small number a;_5 is not in Z. This means a;_, has appeared less than a;_;
times in ap ;—1). By (c), aj_o has appeared at most a;_; times in ap,j—1], hence a;_1 < a;_;.
Combining with a1 ;17 < ap,j—17, this implies 7 < J. But since a;_, € J \ Z, this contradicts
|Z| = |J|. So aj_s € Z, which means it has appeared at least a;_; times in ap ;_1) and one more
time in ap; j_1). Therefore a;_; > a;_;.

By (c), any small number appearing at least a;_; times in afy j_1j has also appeared a;_1—1 >
a;—1 times in ap ;—1). So J = T and hence 7 = J. Therefore, a;_» € J, so it must appear at
least a;_1 — a;—; = 1 more time in af; ;1. O

For each small number a, with n > N’ + 2, let p, be the smallest number such that
Qn+p, = @; is also small for some 7 with n <7 < n + p,. In other words, a,4,, = a; is the first
small number to occur twice after a,_;. If i > n, Lemma 2 (with j = n + p,,) implies that a; o
appears again before a,,,, contradicting the minimality of p,. So ¢ = n. Lemma 2 also implies
that p, = pn_2. SO Pn, Pni2, Pnia, --- is a nondecreasing sequence bounded above by 2k (as
there are only k small numbers). Therefore, p,, pni2, Pnia, --. is eventually constant and the
subsequence of small numbers is eventually periodic with period at most k.

Note. Since every small number appears infinitely often, Solution 1 additionally proves that the
sequence of small numbers has period k. The repeating part of the sequence of small numbers is thus
a permutation of the integers from 1 to k. It can be shown that every permutation of the integers from
1 to k is attainable in this way.
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Solution 2. We follow Solution 1 until after Lemma 1. For each n > N’ we keep track of how
many times each of 1, 2, ..., k has appeared in aq, ..., a,. We will record this information in
an updating (k + 1)-tuple

(bl,bQ, oo ,bk,j>

where each b; records the number of times ¢ has appeared. The final element j of the (k + 1)-
tuple, also called the active element, represents the latest small number that has appeared in
A1y o ooy Qp.

As n increases, the value of (b1, by, ..., bg; j) is updated whenever a, is small. The (k + 1)-
tuple updates deterministically based on its previous value. In particular, when a,, = j is small,
the active element is updated to j and we increment b; by 1. The next big number is a, 1 = b;.
By Lemma 1, the next value of the active element, or the next small number a,, 2, is given by
the number of b terms greater than or equal to the newly updated b;, or

{i|1<i<k b =b. (1)

Each sufficiently large integer which appears ¢+ 1 times must also appear ¢ times, with both
of these appearances occurring after the initial block of N. So there exists a global constant C'
such that b;,1 —b; < C. Suppose that for some r, b, — b, is unbounded from below. Since the
value of b,,1 — b, changes by at most 1 when it is updated, there must be some update where
by41 — b, decreases and b1 — b, < —(k — 1)C. Combining with the fact that b; — b;_; < C for
all 7, we see that at this particular point, by the triangle inequality

min(by, ..., b,) > max(b.41,...,bx). (2)

Since b,,1 — b, just decreased, the new active element is r. From this point on, if the new
active element is at most r, by (1) and (2), the next element to increase is once again from
bi, ..., b.. Thus only by, ..., b, will increase from this point onwards, and b, will no longer
increase, contradicting the fact that k£ must appear infinitely often in the sequence. Therefore
|b,41 — by| is bounded.

Since |by+1 — b,| is bounded, it follows that each of |b; — by| is bounded for i = 1, ..., k.
This means that there are only finitely many different states for (by — by, be — by, ..., b — b1; 7).
Since the next active element is completely determined by the relative sizes of by, b, ..., by to

each other, and the update of b terms depends on the active element, the active element must
be eventually periodic. Therefore the small numbers subsequence, which is either a4, as, as, ...
or asg, a4, ag, ..., must be eventually periodic.
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- Let n be a positive integer. Given an n x n board, the unit cell in the top left corner
is initially coloured black, and the other cells are coloured white. We then apply a series of
colouring operations to the board. In each operation, we choose a 2 x 2 square with exactly
one cell coloured black and we colour the remaining three cells of that 2 x 2 square black.

Determine all values of n such that we can colour the whole board black.

(Peru)
wer: e answer 1S n = where k is a nonnegative integer.
Answer: Th 2k where k t t

Solution 1.  We first prove by induction that it is possible the colour the whole board black
for n = 2. The base case of k = 1 is trivial. Assume the result holds for k = m and consider
the case of K = m + 1. Divide the 2™*! x 2! board into four 2™ x 2™ sub-boards. Colour the
top left 2™ x 2™ sub-board using the inductive hypothesis. Next, colour the centre 2 x 2 square
with a single operation. Finally, each of the remaining 2™ x 2™ sub-board can be completely
coloured using the inductive hypothesis, starting from the black square closest to the centre.
This concludes the induction.

Now we prove that if such a colouring is possible for n then n must be a power of 2.
Suppose it is possible to colour an n x n board where n > 1. Identify the top left corner of
the board by (0,0) and the bottom right corner by (n,n). Whenever an operation takes place
in a 2 x 2 square centred on (7, j), we immediately draw an “X”, joining the four cells’ centres
(see Figure 4). Also, identify this X by (¢, j). The first operation implies there’s an X at (1, 1).
Since the whole board is eventually coloured, every cell centre must be connected to at least
one X. The collection of all Xs forms a graph G.

Figure 4: L-trominoes placements corresponding to colouring operations (left) and the corre-
sponding X diagram (right).

Claim 1. The graph G is a tree.

Proof. Since every operation requires a pre-existing black cell, each newly drawn X apart from
the first must connect to an existing X. So all Xs are connected to the first X and G must be
connected. Now, suppose G has a cycle. Consider the newest X involved in the cycle, it must
connect to previous Xs at at least two points. But this implies the corresponding operation will
colour at most two cells, which is a contradiction. O



56 Bath, United Kingdom, 10221 July 2024

Note that in the following arguments, Claims 2 to 4 only require the condition that G is a
tree and every cell is connected to G.

Claim 2. 1If there’s an X at (i,7), then 1 <7, <n—1and i=j (mod 2).

Proof. The inequalities 1 < 4,5 < n — 1 are clear. Call an X at (¢, ) good if i = j (mod 2), or

bad if i # j (mod 2). The first X at (i,7) = (1,1) is good. Suppose some Xs are bad. Since G

is connected, there must exist a good X connecting to a bad X. But this can only occur if they

connect at two points, creating a cycle. This is a contradiction, thus all Xs are good. ]
Call an X at (4,j) odd if i = j =1 (mod 2), even if i = j =0 (mod 2).

Claim 3. The integer n must be even. Furthermore, there must be 4(n/2—1) odd Xs connecting

the cells on the perimeter of the board as shown in Figure 5.

Proof. If n is odd, the four corners of the bottom left cell are (n,0), (n —1,0),(n —1,1) and
(n, 1), none of which satisfies the conditions of Claim 2. So the bottom left cell cannot connect
to any X. If n is even, each cell on the edge of the board has exactly one corner satisfying the
conditions of Claim 2, so the X connecting it is uniquely determined. Therefore the cells on the
perimeter of the board are connected to Xs according to Figure 5. ]

X X

X X X X
X X X X

X X

Figure 5: Highlighting the permitted points for Xs (left) and Xs on the perimeter (right).

Divide the n x n board into n?/4 blocks of 2 x 2 squares. Call each of these blocks a big-cell.
We say a big-cell is filled if it contains an odd X on its interior, empty otherwise. By Claim 3,
each big-cell on the perimeter must be filled.

Claim 4. Every big-cell is filled.

Proof. Recall that Xs can only be at (4,7) with i« = j (mod 2). Suppose a big-cell centred at
(,7) is empty. Then in order for its four cells to be coloured, there must be four even Xs on
(1—1,7—1), (i+1,j—1), (i—1,j+1) and (i+1,j+1), “surrounding” the big-cell (see Figure 6).

By Claim 3, no empty big-cell can be on the perimeter. So if there exist some empty big-
cells, the boundary between empty and filled big-cells must consist of a number of closed loops.
Each closed loop is made up of several line segments of length 2, each of which separates a filled
big-cell from an empty big-cell.

Since every empty big-cell is surrounded by even Xs and every filled big-cell contains an
odd X, the two end points of each such line segment must be connected by Xs. Since these line
segments form at least one closed loop, it implies the existence of a cycle made up of Xs (see
Figure 6). This is a contradiction, thus no big-cell can be empty. ]
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Figure 6: An empty big-cell surrounded by even Xs (left) and the boundary between empty
and filled Xs creating a cycle (right).

Therefore every big-cell is filled by an odd X, and the connections between them are provided
by even Xs. We can now reduce the n x n problem to an n/2 x n/2 problem in the following
way. Perform a dilation of the board by a factor of 1/2 with respect to (0,0). Each big-cell is
shrunk to a regular cell. For the Xs, replace each odd X at (i,7) by the point (i/2,7/2), and
replace each even X at (7,7) by an X at (i/2, j/2).

We claim the new resulting graph of Xs is a tree that connects all cells of an n/2 x n/2 board.
First, two connected Xs in the original n x n board are still connected after their replacements
(noting that some Xs have been replaced by single points). For each cell in the n/2 x n/2 board,
its centre corresponds to an odd X from a filled big-cell in the original n x n board, so it must
be connected to the graph. Finally, suppose there exists a cycle in the new graph. The cycle
consists of Xs that correspond to even Xs in the original graph connecting big-cells, forming a
cycle of big-cells. Since in every big-cell, the four unit squares were connected by an odd X,
this implies the existence of a cycle in the original graph, which is a contradiction.

Thus the new graph of Xs must be a tree that connects all cells of an 1/2 x n/2 board, which
are the required conditions for Claims 2 to 4. Hence we can repeat our argument, halving the
dimensions of the board each time, until we reach the base case of a 1 x 1 board (where the
tree is a single point). Therefore n must be a power of 2, completing the solution.
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Solution 2. As in Solution 1, it is possible the colour the whole board black for n = 2F.
The colouring operation is equivalent to the placement of L-trominoes. For each L-tromino
we place on the board, we draw an arrow and a node as shown in Figure 7. We also draw a

node in the top left corner of the board.

Figure 7: Tromino with corresponding arrow and node drawn.

Claim 1. The arrows and nodes form a directed tree rooted at the top left corner.

Proof. The proof is similar to the proof of Claim 1 in Solution 1, with the additional note
that the directions of the arrows inherit the order of the colouring operations, so they must be
pointing away from the top left node. O

Note that since all edges of the tree are diagonal, the nodes can only lie on points (7, j) with
i+ 7 =0 (mod 2). This implies that we can only place down L-trominoes of one particular
parity: that is, with the centre of the L-tromino on a point with i + j = 0 (mod 2). In the
remainder of the proof, we will implicitly use this parity property when determining possible
positions of L-trominoes.

Next, we show that certain configurations of edges of the tree are impossible.

Claim 2. There cannot be two edges in a “parallel” configuration (see Figure 8).

Proof. In such a configuration, the two edges can either be directed in the same direction or
opposite directions. If they point in the same direction (see Figure 8), then the L-trominoes
corresponding to the two edges overlap.

Figure 8: Parallel configuration (left) and two parallel edges, case 1 (right).

If they point in opposite directions, then we get the diagram in Figure 9. The cells
marked (*) must lie inside the n x n board, so they must be covered by L-trominoes. There is
only one possible way to cover these with a L-tromino of the right parity. But this makes the
arrows form a cycle, which cannot happen. So we have a contradiction. ]

<

Figure 9: Two parallel edges, case 2.



Shortlisted problems — solutions 59

Claim 3. There cannot be three edges in a “zigzag” configuration, shown in Figure 10.

N\

Figure 10: Zigzag configuration.

Proof. Assume for contradiction that there is a zigzag. Then take the zigzag with maximal
distance from the root of the tree (measured by distance along the graph from the root to the
middle edge of the zigzag).

We may assume without loss of generality that the middle edge is directed down-right. Then
the right edge must be directed up-right, since no two arrows can point to the same node. Next,
we draw in the corresponding L-trominoes, and consider the cell marked (x). There are two
possible ways to cover it with an L-tromino, because of the parity of L-tromino centres.

We could choose the centre of the L-tromino to be the top right corner of the cell (see
Figure 11). This immediately gives another zigzag.

AN /NN

______________

*

Figure 11: Zigzag configuration, case 1.

The other possibility is if we choose the centre of the L-tromino to be the bottom left corner
of the cell (see Figure 12). Then we need to cover the cell marked (**) with an L-tromino. If

N\ N\ /.\—.

Figure 12: Zigzag configuration, case 2.

we placed the centre of the L-tromino on the top left corner of the cell, this would give two
parallel edges, contradicting Claim 2. So we must place the centre of the L-tromino on the
bottom right corner of the cell, which gives a zigzag.

In each case, we get another zigzag further away from the root of the tree, which contradicts
our assumption of maximality. So there cannot be any zigzags. OJ
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We now colour the nodes of the tree. Colour the root node yellow. For all other nodes, we
colour it white if it has an arrow coming out of it in a different direction to the arrow going in,
and black otherwise.

Claim 4. Any child of a black node is white.

o ,
e /I

Figure 13: Black node configuration.

Proof. Suppose we have a black node with a child. Then the arrow exiting the black node must
be in the same direction as the arrow entering it by the definition of our colouring, giving the
left diagram of Figure 13.

The cell marked (x) must be covered by an L-tromino. If the centre of this L-tromino is
the bottom left corner, then this would give an arrow leaving the black node in a different
direction, which cannot happen. So the centre of the L-tromino must instead be the top right
corner, which gives an arrow leaving the upper node in a different direction. Thus the upper
node must be white. ]

Claim 5. Every white node has three children, all of which are black.

* %

g gl sy
Ap Ay A

Figure 14: White node configuration.

Proof. Refer to Figure 14. Suppose we have a white node, as in the leftmost diagram. The cell
marked (%) must be covered by an L-tromino. If the centre of this L-tromino is the bottom
right corner of the cell, then this would form a zigzag, which by Claim 3 is not allowed. So the
centre must be the top left corner.

Next, the cell marked (xx) must be covered by an L-tromino. If the centre of this L-tromino
is the top right corner, this would form a zigzag, so the centre must be the bottom left corner
instead. Thus we have shown that any white node has three children.

Finally, note that if any of the child nodes had three children of their own, then this would
give parallel edges in the diagram, which contradicts Claim 2. Therefore the child nodes of the
white node must all be black. ]

We now know that the node colours alternate between black and white as you go down the
tree, so all white nodes lie on points with coordinates (2i,27), and all black nodes lie on points
with coordinates (2i + 1,25 + 1).

Now (assuming n > 1) we will construct a new board whose cells are 2 x 2 squares of our
current board. We replace the root node and its child with a single big cell and a big root node,
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Figure 15: Replacing with larger cells and L-trominoes.

and we replace each white node and its three children with a big L-tromino, big arrow and big
node as shown in Figure 15.

Every black node is the child of the root node or a white node, so every L-tromino is involved
in exactly one replacement. Also, the parent of any white node is a black node, whose parent,
in turn, is a white node or the root. So the starting point of every big arrow will be on a big
node. Therefore we obtain an L-tromino tiling forming a tree.

This shows for n > 1 that if an n x n board can be tiled by L-trominoes forming a tree, then
n is even, and an n/2 x n/2 board can also be tiled by L-trominoes forming a tree. Since a 1 x 1
board can trivially be tiled, we conclude that the only values of n for which an n x n board
can be tiled are n = 2.
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Geometry

Let ABCD be a cyclic quadrilateral such that AC' < BD < AD and ZDBA < 90°.
Point F lies on the line through D parallel to AB such that £ and C' lie on opposite sides of
line AD, and AC' = DE. Point F' lies on the line through A parallel to C'D such that F' and C'
lie on opposite sides of line AD, and BD = AF.

Prove that the perpendicular bisectors of segments BC' and E'F' intersect on the circumcircle

of ABCD.
(Ukraine)

Solution 1. Let T" be the midpoint of arc BAC' and let lines BA and C'D intersect EF at K
and L, respectively. Note that T lies on the perpendicular bisector of segment BC'.

Since ABC'D is cyclic, SmngD = SinngC. From parallel lines we have ZDAF = ZADC

and ZBAD = /ZEDA. Hence,
AF -sin/DAF = BD -sin ZADC = AC -sin/BAD = DE -sin ZEDA.

So F' and FE are equidistant from the line AD, meaning that E'F is parallel to AD.

We have that KADE and FADL are parallelograms, hence we get KA = DE = AC and
DL = AF = BD. Also, KEE = AD = FL so it suffices to prove the perpendicular bisector
of KL passes through T

Triangle AKC' is isosceles so /BTC = /BAC = 2/BKC. Likewise, /BTC = 2/BLC.
Since T, K, and L all lie on the same side of BC' and T lies on the perpendicular bisector
of BC, T is the centre of circle BKLC'. The result follows.
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Solution 2. Let AF and DFE meet w at X and Y, respectively, and let T be as in Solution 1.
As BD < AD, DY || AB and ZBAY = ZDBA < 90°, we have DY < AB and Y lies on
the opposite side of line AD to C. Also from BD < AD, we have B, C', and D all lie on the
same side of the perpendicular bisector of AB which shows AC' > AB. Combining these, we
get DY < AB < AC = DFE and, as Y and E both lie on the same side of line AD, Y lies in
the interior of segment DFE. Similarly, X lies in the interior of segment DF'.
Since AB is parallel to DY, we have YA = BD = FA. Likewise XD = AC = ED.

Claim 1. T is the midpoint of arc XY .
Proof. From AX || CD and AB || DY we have

/CAX = /AXD =/AYD = /Y DB.
Since T' is the midpoint of arc BAC' , we have / BAT = /TDC, so

LTAX = LCAX + LBAC — /BAT = /YDB+ /BDC — /TDC = LY DT. J

Recall from above we have AB < AC and analogously, DC' < DB, which shows that X, Y
and T all lie on the same side of line AD. In particular, 7" and A lie on opposite sides of XY
so T lies on the internal angle bisector of Z X AY . Since AF = AY, we have AATF =~ NATY,
giving TF =TY .

Likewise, TE = TX, so TE = TF, meaning that T lies on the perpendicular bisector of
segment EF'F as required.

Comment. The statement remains true without the length and angle conditions on cyclic quadrilateral
ABCD however additional care is required to consider different cases based on the ordering of points
on lines DE and AF'. It is also possible for T' to be on the external angle bisector of ZX AY'.
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Solution 3. From AF = DB, AC' = DE and
/(AC,AF) = /(AC,CD) = /(AB,BD) = /(DE,DB),

triangles ACF and DEB are congruent, so CF = BE.
Let P = BE n CF. Since

/(CP,BP) = /(CF,BE) = /(AF,DB) = /(DC, DB),

we have that P lies on circle ABCD.

Finally, let T' be the Miquel point of the quadrilateral BCF'E so T lies on circles EF'P and
ABCD. Note that T is the centre of spiral similarity taking segments BE to C'F and since
BE = CF, this is in fact just a rotation, so T'B = TC and TE = TF’; that is, the perpendicular
bisectors of BC and E'F meet at T, on circle ABCD.
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Let ABC be a triangle with AB < AC < BC| incentre I and incircle w. Let X be the
point in the interior of side BC such that the line through X parallel to AC' is tangent to w.
Similarly, let Y be the point in the interior of side BC' such that the line through Y parallel
to AB is tangent to w. Let Al intersect the circumcircle of triangle ABC again at P # A. Let
K and L be the midpoints of AB and AC', respectively.

Prove that ZKIL + /Y PX = 180°.
(Poland)

Solution 1. Let A’ be the reflection of A in I, then A’ lies on the angle bisector AP. Lines
A’X and A’Y are the reflections of AC and AB in I, respectively, and so they are the tangents
to w from X and Y. As is well-known, PB = PC = PI, and since ZBAP = /PAC > 30°,
PB = PC(C is greater than the circumradius. Hence PI > %AP > AI; we conclude that A’ lies
in the interior of segment AP.

We have ZAPB = ZACB in the circumcircle and ZACB = ZA'XC because A’X || AC.
Hence, ZAPB = /ZA’XC, and so quadrilateral BPA’X is cyclic. Similarly, it follows that
CY A'P is cyclic.

Now we are ready to transform / KIL+ /Y PX to the sum of angles in triangle A’‘CB. By
a homothety of factor 2 at A we have /KIL = /ZCA'B. In circles BPA'X and CY A'P we
have ZAPX = ZA'BC and LY PA = ZBCA’, therefore

/KIL+/YPX =/CAB + (LYPA + LAPX) =/CA'B+ /BCA + LA'BC = 180°.
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Comment. The constraint AB < AC' < BC was added by the Problem Selection Committee in order
to reduce case-sensitivity. Without that, there would be two more possible configurations according to
the possible orders of points A, P and A’, as shown in the pictures below. The solution for these cases
is broadly the same, but some extra care is required in the degenerate case when A’ coincides with P
and line AP is a common tangent to circles BPX and CPY.

A
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Solution 2. Let BC =a, AC =b, AB =cand s = %b“, and let the radii of the incircle,
B-excircle and C-excircle be r, r, and r., respectively. Let the incircle be tangent to AC' and AB
at By and (Y, respectively; let the B-excircle be tangent to AC' at By, and let the C-excircle
be tangent to AB at C. As is well-known, AB; = s — ¢ and area(AABC) = rs = r.(s — ¢).
Let the line through X, parallel to AC' be tangent to the incircle at E, and the line
through Y, parallel to AB be tangent to the incircle at D. Finally, let AP meet BB; at F.

It is well-known that points B, F/, and B; are collinear by the homothety between the incircle
and the B-excircle, and BE || IK because IK is a midline in triangle ByEB;. Similarly,
it follows that C', D, and C; are collinear and C'D || IL. Hence, the problem reduces to
proving /Y PA = ZCBE (and its symmetric counterpart ZAPX = /DCB with respect to
the vertex C), so it suffices to prove that FY PB is cyclic. Since ACPB is cyclic, that is
equivalent to FY || B;C and % =5

By the angle bisector theorem we have

BF AB ¢
FB, AB, s—c¢

The homothety at C' that maps the incircle to the C-excircle sends Y to B, so
BC T S

YC r s—c

So,
BY BC S c BF

2 2 _ 20
YC YC s—c s—c FBy’

which completes the solution.
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Let ABCDFE be a convex pentagon and let M be the midpoint of AB. Suppose
that segment AB is tangent to the circumcircle of triangle CME at M and that D lies on the
circumcircles of triangles AME and BMC'. Lines AD and M FE intersect at K, and lines BD
and MC intersect at L. Points P and @ lie on line EC' so that /PDC = ZEDQ = LADB.

Prove that lines K P, L(Q), and M D are concurrent.
(Belarus)

Common remarks. Each of solutions we present consists of three separate parts:
(a) proving KP || MC and LQ || M E;

(b) proving KL || AB and, optionally, showing that points C, E, K, and L are concyclic;

(c) completing the solution either using homotheties or the parallelogram enclosed by lines
KP, MK, ML and LQ@), or radical axes between three circles.

Solution 1.

(a) Notice that the condition ZPDC = ZADB is equivalent to ZADP = /BDC, and
/EDQ = ZADB is equivalent to ZEDA = ZQDB. From line AB being tangent to circle
CMEFE, and circles AMDE and CDMFE we read /ECM = /FEMA =/EDA = /ZQDB
and ZMEC = /BMC = /BDC = LADP.

Using ZADP = /MEC, the points D, E, K, and P are concyclic, which gives that
/EPK = /EDA = ZFECM. From that, we can see that KP || MC. It can be shown
similarly that C', D, @, and L are concyclic, ZLQC = /M EC and therefore LQ | ME.

(b) Let rays DA and DB intersect circle CDE at R and S, respectively. We now observe that
/SEC = /Z5SDC = ZMEC, so points E, M, and S are collinear. We similarly obtain
that C', M, and R are collinear.

From ZSRC = ZSEC = ZBMC we can see that RS || AB. Since M bisects AB, it
follows that KL || RS.

(c) Consider the homothety at D that sends RS to K L. Because KP || RC and LQ || SE,
that homothety sends the concurrent lines DM, RC', and SE to DM, KP, and L@, so

these lines are also concurrent.
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Solution 2.

(a) As in Solution 1, we show the following: ZECM = /ZEMA = /EDA = ZEPK,

/MEC = /BMC = /BDC = ZLQC,; the points C, D, (), and L are concyclic; the
points D, E, K, and P are concyclic; KP || MC'; and LQ || ME.

(b) Notice that triangles EK P and EMC are homothetic at F, so their circumcircles CM E and

DEKP are tangent to each other at F. Similarly, circle CDQL is tangent to circle CM E
at C.

Suppose that the tangents to circle CM E at C' and E intersect at point X. (The case when
CF is a diameter in circle C M E can be considered as a limit case.) Moreover, let FX and
CX intersect circles DEAM and BC'DM again at A; # E and By # C, respectively.

We have XFE = X' because they are the tangents from X to circle CME. Moreover, in
circle DEAM, chords AM and A, E are tangent to circle CM E, so A{E = AM. Similarly,
we have B1C = BM, hence A1E = AM = BM = B;C. We conclude X A; = X B, so the
powers of X with respect to circles DEAM and BCDM are equal. Therefore, X lies on
the radical axis of these two circles, which is DM.

Now notice that by XC = XFE, point X has equal powers to circles CDQL and DEKP,
so DX is the radical axis of these circles. Point M lieson DX, so ME- MK = MC - ML;
we conclude that C', E, K, and L are concyclic. Hence, by /ZMKL = /ECM = /KMA
we have KL || AB.

As /EPK = /EMA = /ZQLK, we have that K LQP is cyclic. The radical axes between
circles DEKP, CDQL and KLQP are DM, KP and L(Q), so they are concurrent at the
radical centre of the three circles.
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Solution 3.

(b) We present another proof that KL || AB.
Let ADNLQ =1,  BDnKP=H, ABn LQ =U and ABn KP =V. Since

/DHP = /DLM = 180° — Z/CLD = 180° — ZCQD = /DQE,

point H lies on circle DP(Q). Similarly, we obtain that point I lies on this circle. Hence,
/LIH =/QDB =/EDA=/EMA, and LQ || ME implies that HI || AB.

Let AM = BM = d, then we have

BU BL BM  d AV A AM
IH LH MV d+av ™™ T~ KI ~ MU  d+BU

Hence, BU - (d + AV) = AV - (d + BU), so BU = AV. Therefore, AMLU =~ AVKM
which implies KL || AB || HI.

(c) Lines MK, ML, KP and LQ enclose a parallelogram. Line DM passes through the
midpoint of K L, which the centre of the parallelogram, and passes through the vertex M.
Therefore, DM passes through the opposite vertex, which is the intersection of K P and L().
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Let ABCD be a quadrilateral with AB parallel to CD and AB < CD. Lines AD
and BC' intersect at a point P. Point X # C' on the circumcircle of triangle ABC' is such
that PC = PX. Point Y # D on the circumcircle of triangle ABD is such that PD = PY.
Lines AX and BY intersect at Q).

Prove that P(Q) is parallel to AB.
(Ukraine)

Solution 1. Let M and N be the midpoints of AD and BC, respectively and let the perpen-
dicular bisector of AB intersect the line through P parallel to AB at R.

Lemmoa. Triangles QAB and RN M are similar.

Proof. Let O be the circumcentre of triangle ABC', and let S be the midpoint of C'X. Since
N, S, and R are the respective perpendicular feet from O to BC, CX, and PR, we have
that quadrilaterals PRNO and C'NSO are cyclic. Furthermore, P, S, and O are collinear as
PC = PX. Since ABCX is also cyclic, we have that

LQAB = /XCB = ZPON =180° — ZNRP = ZMNR.

Analogously, we have that ZABQ = ZRM N, so triangles QAB and RN M are similar. O

(@)

Let d(Z,¢) denote the perpendicular distance from the point Z to the line ¢. Using that
PR || AB along with the similarities QAB ~ RNM and PAB ~ PM N, we have that

d(Q,AB) d(R,MN) d(P,MN) d(P,AB)

AB MN MN AB
which implies that PQ || AB.
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Solution 2. Let BD and AC intersect at T and let the line through P parallel to AB intersect
BD at V. Next, let Q' be the foot of the perpendicular from 7" to PV. Finally, let )’ A intersect
circle ABC' again at X’ and )'B intersect circle ABD again at Y.

1% Q P

X/

Claim. PQ)' bisects Z BQ'D externally.

Proof. Let PT intersect C'D at L. Let cogp be the point at infinity on line C'D. From the
standard Ceva-Menelaus configuration we have (D, C'; L, 0¢p) is harmonic. Hence projecting
through P we have

—1=(D,C; L,ocp) = (D,B;T,V).

As (D, B;T,V) is harmonic, and also ZVQ'T = 90° (by construction), the claim follows. []

Now as

/Q'PD = /BAD = 180° — /DY'B = 180° — /DY"(/

we have Q'PDY’ cyclic. By the claim, we have that P is the midpoint of arc DQ'Y”, so
PD = PY'.

Since Y is the unique point not equal to D on circle ABD satisfying PD = PY, we have
Y'=Y.

Likewise X' = X so @’ = ) and we are done.
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Solution 3. Let AX intersect circle PC'X for the second time at (). Then
LAQ'P=/XQ'P=/XCP=/XCB=180°—- /ZBAX = ZQ'AB

so P(Q)’ is parallel to AB. Hence, it suffices to show that @)’ is equal to (). To do so, we aim to
show the common chord of circles PCX and PDY is parallel to AB, since then by symmetry
()’ is also the second intersection of BY and circle PDY .

Oc

Let the centres of circles PCX and PDY be Ox and Oy, respectively. Let the centres of
circles ABC' and ABD be O¢ and Op, respectively.

Note P, Ox, and O¢ are collinear since they all lie on the perpendicular bisector of C'X.
Likewise P, Oy, and Op are collinear on the perpendicular bisector of DY. By considering the
projections of Ox and O¢ onto BC, and Oy and Op onto AD, we have

POx S B2 POy
POC PB;—PC PA—12-PD POD

Hence OxOy is parallel to OcOp, which is perpendicular to AB as desired.
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Let ABC be a triangle with incentre I, and let §2 be the circumcircle of triangle BIC.
Let K be a point in the interior of segment BC such that Z/BAK < Z K AC. The angle bisector
of Z BK A intersects 2 at points W and X such that A and W lie on the same side of BC', and
the angle bisector of ZC' K A intersects () at points Y and Z such that A and Y lie on the same
side of BC.
Prove that ZWAY = /ZAX.
(Uzbekistan)

Common remarks. The key step in each solution is to prove that / ZAK = Z/IAY and
/WAK = /IAX. The problem is implied by these equalities, as we then have that

LWAY = AIWAK + LKAl + LTAY = /TAX + LKAl + LZAK = LZAX.

A
Y
BAW? \ \ ¢
7
X

We now present several proofs that / ZAK = /TAY, with /ZWAK = /IAX following in
an analogous manner.

Solution 1. Let I' be circle ABC and w be circle AY Z. Let O, M, and S be the centres of
I', ©, and w, respectively. Let AK intersect I" again at P, and let the angle bisector of Z/ZAY
intersect w again at V.
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By power of a point from K to I' and €2, we have that KA-KP = KB-KC = KY -KZ, so
P also lies on w. The pairwise common chords of I', €2, and w are then AP L OS, BC 1L OM,
and YZ 1 MS, so we have that ZOMS = ZCKY = /YKA =/ZMSO. As M lies on I" and
OM = OS, S also lies on I'. Note that N lieson MS as NY = NZ, so

/LPAN = %LPSN = %LPSM = %LPAM.

Thus, AN bisects ZPAM in addition to ZZAY, which means that ZZAK = ZIAY as K lies
on AP and I lies on AM.

Solution 2. Define M and P as in Solution 1, and recall that AY PZ is cyclic. Let @ be
the second intersection of the line parallel to BC' through P with circle ABC and let J be the
incentre of triangle APQ).

7 M

Since P(Q) is parallel to BC' and ZBAP < £ZPAC, the angle bisector of ZAP(Q is parallel
to the angle bisector of ZAKC. Hence, PJ is parallel to YZ. As M is the midpoint of PQ)
on circle APQ), we have that M P = M.J. Then since segments Y Z and P.J are parallel and
have a common point M on their perpendicular bisectors, PJY Z is cyclic with JY = PZ. It
follows that J also lies on circle AY PZ and that /ZAP = /JAY = /IAY.

Comment. The proof of the analogous case of ZWAK = ZIAX is slightly different. In this case,
J should be defined as the A-excentre of APQ so that PJ is the external bisector of ZAP(Q and
PJ || WX. The proof is otherwise exactly the same.
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Solution 3. As in the previous solutions, let M be the centre of 2. Let L be the intersection
of AM and BC, and let L’ be the reflection of L over YZ. Let the circle MY Z intersect AM
again at T

Note that as M is the midpoint of BC on circle ABC and L is the foot of the bisector
of ZBAC, we have that MA- ML = MI? = MY?. It follows by power of a point that MY is
tangent to circle ALY, so ZLAY = /LY M. Using directed angles, we then have that

XAYT = AMTY — XMAY = XMZY — {LYM = XZYM — XLYM = XZYL = XL'YZ,

where we use the fact that MY = M Z and that L and L’ are symmetric about Y Z. Thus, YT
and Y' L' are isogonal in ZAY Z. Analogously, we have that ZT and ZL’ are isogonal in /Y Z A.
This means that 7" and L’ are isogonal conjugates in triangle AY Z, which allows us to conclude
that / ZAK = ZIAY since L’ lies on AK and T lies on Al.

Comment. Owing to the condition /ZBAK < /ZKAC, points L' and T lie inside triangle AY Z.
However, if one tries to write down the same proof for ZWAK = ZIAX, the analogues L} and T; of
L’ and T would lie outside triangle AW X. Thus, the solution has been written using directed angles
so that it applies directly to this case as well. It is also possible that L} lies on circle AW X and T3 is
a point at infinity. In this case, it is straightforward to interpret the directed angle chase to prove the
isogonality, and the isogonality also follows from this scenario being a limit case of other configurations.

Note. The original proposal remarks that this problem is a special case of a more general property:

A conver quadrilateral ABCD is inscribed in a circle w. The bisectors between AC and BD
intersect w at four points, forming a convex quadrilateral PQRS. Then the conditions

XA-XC=XB-XD and £(XP,XQ)=4£(XS,XR)

on point X are equivalent.

The Problem Selection Committee believes that the proof of this generalisation is beyond the scope
of the competition and considers the original problem to be more suitable.
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Let ABC be an acute triangle with AB < AC, and let I" be the circumcircle of ABC.
Points X and Y lie on I' so that XY and BC intersect on the external angle bisector of Z BAC.
Suppose that the tangents to I' at X and Y intersect at a point 7" on the same side of BC'
as A, and that T X and TY intersect BC at U and V, respectively. Let J be the centre of the
excircle of triangle TUV opposite the vertex T

Prove that AJ bisects ZBAC.
(Poland)

Solution 1. Let N be the midpoint of BAC on I', and let NX and NY intersect BC at W
and Z, respectively.

Claim. Quadrilateral W XY Z is cyclic, and its circumcentre is J.

Proof. As N is the midpoint of BAC', W and Z lie on BC, and X and Y are the second
intersections of NW and NZ with I', we have that W XY Z is cyclic.

Let the parallel to BC' through N intersect TU and TV at U’ and V', respectively. Then U’
is the intersection of the tangents to I at NV and X, so UN = U'X. As NU' || BC, UNX is
similar to UW X, so UW = UX as well. Hence, the perpendicular bisector of W X is the internal
bisector of Z XUW | which is the external bisector of ZVUT. Analogously, the perpendicular
bisector of Y Z is the external bisector of ZT'VU. This means that the circumcentre of W XY Z
is the intersection of the external bisectors of ZVUT and ZTVU, which is J. ]

J

Let AN intersect BC' at L, so XY passes through L as well. By power of a point from L to
I' and circle WXY Z, we have that LA- LN = LX - LY = LW - LZ, so WANZ is also cyclic.
Thus, A is the Miquel point of quadrilateral W XY Z. As W XY Z is cyclic with circumcentre J
and its opposite sides WX and Y Z intersect at NV, we have that AN 1 AJ. Since AN is the
external bisector of Z BAC, this implies that AJ is the internal bisector of ZBAC.
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Solution 2. Let the internal and external angle bisectors of Z BAC intersect BC' at K and L,
respectively. Let AK intersect circle ABC again at M, and let D be the intersection of the
tangents to I' at B and C'. Let Q) be the T-excircle of TUV | and let w be the incircle of DBC.

Claim. The points T, K, and D are collinear.

Proof. Note that BC' and XY are the polars of 7" and D with respect to I'. By La Hire’s
Theorem, T'D is the polar of L with respect to I'. As (B,C; K, L) = —1, K also lies on the
polar of L, thus proving the collinearity. O
Claim. The incentre of DBC' is M.

Proof. We have that /ZMBC = /MAC = %LBAC’ = %LDBC’, so BM bisects ZDBC.
Similarly, CM bisects ZBCD, so M is the incentre of DBC. ]

Claim. The intersection of the common external tangents of €2 and w is K.

Proof. Let K’ be the intersection of the common external tangents of Q and w. As Q and w
are both tangent to BC' and lie on the same side of BC' opposite to A, K’ lies on BC. As T is
the intersection of the common external tangents of I' and 2 and D is the intersection of the
common external tangents of I' and w, by Monge’s theorem K’ lies on T'D. As K’ lies on both
BC and T'D, it is the same point as K. ]

Hence, K is collinear with the centres of €2 and w, which are M and .J, respectively. As K
and M both lie on the bisector of Z BAC', so does J.

Note. It can be shown that circles AUV and ABC' are tangent and that the tangents from U and V'
to circle ABC different from TU and TV intersect at a point W on line TK. Reframing the problem
in terms of quadrilateral TUWV using these properties, we obtain the following problem:

Let ABCD be a convex quadrilateral with an incircle w, and let AC' and BD intersect at P. Point
lies on w such that the circumcircle of ACFE is tangent to w. Prove that if B and E lie on the same
side of line AC, then the centre of the excircle of triangle ABC opposite the vertex B lies on line EP.

While this is an appealing statement, the Problem Selection Committee is uncertain about its
difficulty and whether it has solutions that do not proceed by reducing to the original problem. Thus,
it is believed that the original statement is more suitable for the competition.



80 Bath, United Kingdom, 10221 July 2024

- Let ABC be a triangle with incentre I such that AB < AC < BC. The second
intersections of AI, BI, and CI with the circumcircle of triangle ABC' are M4, Mg, and M,
respectively. Lines Al and BC' intersect at D and lines BMs and C'Mp intersect at X. Suppose
the circumcircles of triangles X MpMs and X BC' intersect again at S # X. Lines BX and CX
intersect the circumcircle of triangle SX M4 again at P # X and ) # X, respectively.

Prove that the circumcentre of triangle SID lies on PQ.
(Thailand)

Solution 1.

Let O be the circumcentre of AABC'. First we note from standard properties of the Miquel
point S we have:

e ASMcMp ~ ASBC ~ ASPQ; ()
e [ and S are inverses with respect to circle ABC;

o LOSX = 90°.

Claim 1. /MyPB = /ZCDA.
Proof. From the above we have AOM I ~ AOSM 4 and

LMaPB = LZMyPX = ZMaSX = 90°+£4MsSO = 90°+LOMyl = LMsBA = ZCDA. [
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Claim 2. McB _ MpC _ Al

BP cQ D
Proof. Observe that ZPMcMy = Z BMcMy = ZDAC and ZMcMaB = Z1CD. Combining

these with Claim 1 shows McPM B ~ ADCI. Therefore, % = IA—é. Similarly, ]Vé%c = f—é.

[

Claim 3. g—g = %.
Proof. Firstly, observe that ZICB = ZAMgM¢y and ZCBI = ZMgMaA which gives that

AIBC ~ NAMcMpg. This, combined with Claim 2, is enough to show ADPQ ~ AIBC by

linearity, proving the claim. ]
Claim 4. % = %.

Proof. Combining AIBMqs ~ AICMp with Claim 2 shows IBMcP ~ ICMpg(@ giving the
result. ]

Finally, we have that
SP SB BMc IB

SQ SC CMy IC
from () and AIBM¢ ~ AICMp. Putting this together with Claims 3 and 4, we have that

IB DP IP SP
IC DQ 1Q SQ’
which shows that circle STD is an Apollonius circle with respect to P and @), giving the desired

conclusion.

Comment. The condition AB < AC ensures S # X. We also need to avoid the case ZBAC = 60°
as then BM¢ || CMp.



82 Bath, United Kingdom, 10221 July 2024

Solution 2. We use Claim 1 from Solution 1. We will show that P and () are inverses in
circle SID which implies the result. Perform an inversion in circle BIC and denote the inverse
of a point e by e’

Claim 1. S" = J where J is the reflection of I across BC.

Proof. We have that S and I are inverses in circle ABC. Inverting this assertion in circle BIC
shows that S” and [ are inverses with respect to line BC', which is just a reflection in line BC.

L]

Let Y = MgMsn BC. From LIMcMp = ZMgMcA and LZAMpMe = L McMgl, we see
that A and I are reflections in line MgM¢s so YA = YI. We have that circle SID maps to
circle AIJ which, from the previous comment, has centre Y. Inverting the conclusion that P
and (Q are inverses with respect to circle SID in circle BIC, it suffices to show P’ and )" are
inverses with respect to circle AIJ or equivalently, that Y P’ - Y Q' = Y A2
Claim 2. Circle XSM 4 maps to line Y J under the inversion in circle BIC.
Proof. Since circle BIC' has centre M4, the inverse of this circle is a line. By Claim 1, this
line passes through J hence it suffices to prove that circle X SM, passes through Y’. From
inverting line BC' in circle BIC, we have that BCM4Y" is cyclic so

YS YX=YB-YC=YY"-YMaj.

where we have used that Y, S and X are collinear by a standard property of the Miquel point.
Hence Y’ lies on circle X SM 4 as required. OJ
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Let A; be the reflection of A in the perpendicular bisector of BC. Using Claim 1 from
Solution 1,

/P'BMy = /MyPB=/CDA =180°— ZACM, = 180° — L M,BA,.

Hence, P’, B, and A; are collinear. Similarly @', C, and A; are collinear. Let P; and @, be
the reflections of P’ and )" across BC. As P’ and Q' lie on line Y J, it follows that P, and Q)
lie on line Y'I. Also from the previous collinearities, we get BP; || AC and CQ; || AB.

We have now reduced the problem to the following:

Claim 8 (Inverted Problem). Let ABC be a triangle with incentre I. Let Y be the point on BC'
such that YA = YI. Let P, and @1 be points on YT such that BP; || AC and CQ, || AB.
Then YA2 = YPl . YQl

Proof. Let Y intersect AB and AC at E and F', respectively. From the parallel lines, we get
that ABEP; and ACQF are homothetic with centre Y. Thus we have

YE Y@
YP, YF

— YP,-YQ,=YE YF.

Moreover, Al bisects ZFEAF and YA = Y1 so the circle centred at Y with radius Y A is the
Apollonius circle of AAFEF with respect to the feet of the internal and external angle bisectors
at A. This gives YE - YF = Y A%, Combining these results proves the claim. ]
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Solution 3. As in Solution 1, let O be the circumcentre of AABC. Let XI intersect
circle XSM, again at Z # X and let Y = BC n MgMy. Let X* be the inverse of X in
circle ABC'. We will use the properties of Miquel point S noted at the top of Solution 1 and
in addition, that S lies on line XY

Claim 1. Y SAD is cyclic.

Proof. From OM 41 BC and YS1OS we have ZDY S = 180° — £LSOM,. From inverting
collinear points A, I and My in circle ABC we get ASM 40 is cyclic which gives

LSOMy = LSAMy = LSAD — /SAD + /DY S = 180°

proving the claim. ]
Claim 2. X* lies on circle BIC which has centre My4.
Proof. This follows immediately from inverting circle SBCX in circle ABC. O

Claim 3. Z lies on circle SID.
Proof. We have that

LIZS = L XMpS = LOMpS — LOMuX = LMAIO — LMAX*O = £DIO — ZMAX*O

where in the penultimate step we inverted in circle ABC' to get the angle equalities.
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From Brocard’s Theorem applied to cyclic quadrilateral BMcMpC', we get Y, I, and X*
collinear and ZY X*0O = 90°. This gives that

L MaX*0 =90° — LIX My =90° — LMAIX* =90° — LAIY,

where the second equality is by Claim 2. We have that A and I are reflections in line MgM¢.
Hence,
90° — LAIY =90° — LY AD =90° — Y SD = ZDSO

where the second step is by Claim 1, and in the last step we are using OSLYS. Putting these
together,
LI1ZS =/DIO — /ZDSO = ZIDS,

proving the claim. L]

Let the tangents from S and Z to circle X SM, intersect at K. Observe from the standard
Ceva-Menelaus configuration,

—1=(XY,XI;XB,XC) % (5,7,PQ).
This shows that K lies on line PQ). We then have
LZKS =180°—2/45X7Z =2(90° — £LSXI) =2(180° — £SI1Z),

where we are using /15X = 90°. As K lies on the perpendicular bisector of SZ, this is enough
to show that K is the centre of circle SIDZ completing the proof.
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Solution 4. Solution 1 solves the problem by establishing g—g = % = g—g, which implies
that circle SID is an Apollonius circle with respect to P and ). We demonstrate an alternate
approach that only requires us to show two of the ratios g—g, %, and g—g to be equal. This can
arise from missing some of the observations in Solution 1, for example not proving Claim 3.

Claim. Given we have shown two of the ratios listed above to be equal, it suffices to show that
circle SID is orthogonal to circle SX M4, which the same circle as SPQ.

Proof. Supposing we have shown the orthogonality, if g—g = % or g—g = %, then we immedi-
ately have that circle SID is an Apollonius circle with respect to P and . If % = g—g and

S does not lie on the Apollonius circle C defined by this common ratio, then I and D lie on
two distinct circles orthogonal to circle SP@Q, namely circle SID and C. This implies that I
and D are inverses with respect to circle SPQ, which is a contradiction as both [ and D lie
inside circle SPQ). OJ

Throughout this solution, we will use the properties of S from the beginning of Solution 1.

Define O and Y as in previous solutions, and let F be the second intersection of circles SOM 4
and SMpgMc.

Lemma. We have that OF 1 AY.

Proof. Let M/, B', and C”" be the respective reflections of My, B, and C over line MpMc.
As noted in Solution 3, A and I are reflections across MpMs. Because My is the centre
of circle BIC, it follows that M/ is the centre of circle AB’C’. On the other hand, Y lies
on MgMc, so we have that YB - YC = YB' - Y(C'. Thus, Y lies on the radical axis of
circles ABC and AB'C’, so OM/, 1 AY. Finally, note that the inverses of circles SOM4
and SMpMc¢ in circle ABC are line IM, and circle IMpM¢ respectively, so £ and M/, are
inverses in circle ABC'. Thus, E lies on OM/; and the lemma follows. ]
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Let T denote the composition of an inversion at S with radius v/ ST - SO with a reflection
across line SI. By standard properties of the Miquel point, 7 swaps X and Y and any points
7y and Z on circle ABC with I € Z1Z5. Hence, T swaps the pairs (A, M4), (B, Mp), (C, M¢),
(O,1),and (X,Y). As D = AI n BC and F is the intersection of circles SOM, and SMgMe,
we have that 7(D) = E. Thus, T maps circles SID and SX M, to lines OF and AY, so by
the Lemma, circles STD and SX M, are orthogonal, as required.
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- Let ABC be a triangle with AB < AC' < BC', and let D be a point in the interior of
segment BC'. Let F be a point on the circumcircle of triangle ABC such that A and FE lie on
opposite sides of line BC' and Z/BAD = /FEAC. Let I, Ig, Ic, Jg, and Jo be the incentres of
triangles ABC', ABD, ADC, ABE, and AEC, respectively.

Prove that Ig, I, Jg, and Jeo are concyclic if and only if AI, IgJec, and Jglo concur.
(Canada)

Solution 1. Let X be the intersection of IgJo and Jglo. We will prove that, provided that
AB < AC < BC, the following two conditions are equivalent:

(1) AX bisects ZBAC
(2) Ip, Ic, Jp, and Jo are concyclic.

Let circles AIB and AIC meet BC' again at P and (@), respectively. Note that AB = BQ
and AC' = C'P because the centres of circles AIB and AIC lie on C'I and BI, respectively.
Thus, B, P, @), and C' are collinear in this order as BQ + PC = AB+ AC > BC by the triangle
inequality.

Claim 1. Points P, Jg, and I are collinear, and points (), Ig, and Jo are collinear.
Proof. We have that

1 1
LAJpB =90° + §LAEB =90° + §LACB =/AIB = /APB,

so ABJgP is cyclic. As A is the centre of spiral similarity between ABE and ADC, it is
also the centre of spiral similarity between ABJg and ADIs. Hence, A is the Miquel point of
self-intersecting quadrilateral BDIo.Jg, so P lies on Jglo. Analogously, we have that Q lies
on [ B Jc. ]

Throughout the rest of the solution, we will use directed angles.
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Proof of (1) = (2). We assume that (1) holds.
Claim 1 and the similarities ABDIg ~ AEC Jo and ABEJg ~ ADCI¢ tell us that

ZIpXlc = £JcQC + £BPJg = XJcAC + £ BAJg = I AD + X DAl = X 1gAlc,
so AIgXIc is cyclic. Also, as X € A, we have that
KIgAX = X BAIl — X BAlg = 1Al — X1BAsD = X DAI¢.
Using these, we have that
KIgloP = XIgAX = DAl = XBAJg = ABPJg,
so Iglc || BC. Hence,
AIplcJp = XBPJp = ABlJg = X1l Jp,

so IIgJplc is cyclic. Analogously, we have that I1-Jco1p is cyclic, so IgJgJole is cyclic, thus
proving (2). O
Proof of (2) = (1). We assume that (2) holds.

Claim 2. Circles IBC, IJglc, and I1gJs are tangent at I.

Proof. Using the cyclic quadrilateral BI.Jg P, we have that

XIBC = XIBP = X1JgP = X1Jglc.

As C, I, and I are collinear, the tangents to circles I.Jglc and IBC' at I coincide, so circles
IJplc and IBC are tangent at I. Analogously, circles [1gJs and I BC are tangent at I, so all
three circles are tangent at . OJ

Claim 3. Point [ lies on circle IgJgJclc.

Proof. Suppose that I does not lie on circle IgJgJoIlo. Then the circles I1gJo, IJglc, and
IgJpJclc are distinct. We apply the radical axis theorem to these three circles. By Claim 2,
the radical axis of circles Iz J- and I Jglc is the tangent to circle IBC at I. As IgJc and Jglc
intersect at X, I X must be tangent to circle /BC.

However, by Claim 1 we have that X is the intersection of PIo and QIg. As D lies on
the interior of segment BC, Ig lies on the interior of segment BI and I lies on the interior of
segment C'I. Hence, Ig, P, (), and I all lie on the perimeter of triangle I BC' in this order,
so X must be in the interior of triangle IBC'. This means that IX cannot be tangent to
circle BIC, so I must lie on circle IgJgJclc. O

By Claims 2 and 3, circles [Igls and I BC' are tangent, so Igle || BC. Since IgJpJclc is
cyclic, we have that

APJpJc = XlcJpJc = Klclpc = £ PQIp = X PQJc,
so PJpJcQ is cyclic. By the radical axis theorem on circles AIPJg, AIQJc, and PJgJoQ),
we have that AI, IgJe, and Jplc concur at X, thus proving (1). O

Solution 2. Let X be the intersection of IgJc and Jglc. As in Solution 1, we will prove that
conditions (1) and (2) are equivalent. To do so, we introduce the new condition:

(3) Iglc || BC

and show that (3) is equivalent to both (1) and (2), provided that AB < AC < BC.

Note that ABD X AEC and ABE < ADC, where L denotes positive similarity. We will
make use of the following fact.



90 Bath, United Kingdom, 10221 July 2024

Fact. For points P, P;, P,, P3, and P, the positive similarities
PP P, X PPP, and PP Py < PRP,

are equivalent.

Proof of (1) < (3). Let Alp and Alc meet BC at S and T, respectively. Let AJp meet
BE at K, AJo meet CE at L, and KT and SL meet at Y.

Claim 1. Line AY bisects Z BAC.
Proof. Let Y’ be the intersection of KT and the bisector of ZBAC. As

/BAK = %LBAE = %LDAC = LTAC,

AY" also bisects ZKAT. Hence, Y’ is the foot of the bisector of Z K AT in triangle AKT.
Using the Fact, we have that

ABE X ADC — ABEK < ADCT
— ABD L AKT L AEC
— ABDS L AKTY' L AECL
— ABEK < ASLY’ X ADCT.

As K lies on BE, we have that Y’ lies on SL, so Y =Y’ and AY bisects ZBAC. OJ

We show that X lies on AY if and only if Iglc || BC, which implies the equivalence of
(1) and (3) by Claim 1. Let AY meet IpJo and Jplc at X; and Xy, respectively. As ABD
and AFC are similar, we have that ‘%95 = %, so IgJe || SL. Analogously, we have that
Jplc || KT. Hence, X; and X, coincide with X if and only if

Alp  AXy, AXy, Alg
AS  AY  AY AT’
which is equivalent to Iglc || BC. O
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Proof of (2) < (3). Let AJp and AJc meet circle ABC at M and N, respectively, and let
I; and I/, be the A-excentres of ABD and ADC), respectively.

A

Claim 2. Lines Iplc, I51},, and BC are concurrent or pairwise parallel.

Proof. We work in the projective plane. Let Iplc and Izl meet BC at Z and Z’, respec-
tively. Note that Z is the intersection of the external common tangents of the incircles of
ABD and ADC and AD is a common internal tangent of the incircles of ABD and ADC,
so (AD,AZ; Alg, Alc) = —1. Applying the same argument to the A-excircles of ABD and
ADC gives (AD, AZ'; Aly, Al},) = —1, which means that Z = Z’. Thus, Iglc, I51, and BC
concur, possibly at infinity. H
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Clatm 3. Lines Jpls and C'M are parallel, and lines IpJ- and BN are parallel.
Proof. Using the Fact, we have that

ABE X ADC = ABEJg L ADCI, = AJgls < ABD.
Thus, Z(BD, Jglc) = LBAJg = ZBCM,so Jglc || CM. Similarly, we have that IgJe || BN.
O

Claim 4. The centre of spiral similarity between JpJo and I51/ is A.
Proof. As Ip and I} are respectively the incentre and A-excentre of triangle ABD, we have
that ABI}, X AIpD. Using the similarity ABD < AFEC, this means that ABI} < AJoC, so
AB-AC = Al;-AJe and LBAIy = £ZJcAC. Similarly, we have that AB-AC' = AJg-Al}, and
LBAJg = LI AC. Together, these imply that Al;-AJc = AJp-All, and £LJpAJo = LIFAIL,
so AJgJc ~ AIGIL. O
We proceed using directed angles. By Claim 3, we have that IgJgJcol¢ is cyclic if and only
if
XlgleJg = X1gJocJp < XIglcJp+ AMCB = XIgJcJg + AMNB
< A (Iglc,BC)=%(MN,JgJc).
By Claim 4, we have that
A(Jpde, Izl5) = £ JpAlg
=X BAIp + XMAB
=X FAJc+ AMAB
=4 NAC + X MAB

= %(MN, BC),
which is equivalent to £ (BC, Igzl) = £(MN, JgJc). Thus, IgJpJelc is cyclic if and only if
A (Iple, BC) = £(BC, ILI¢). (%)

Suppose that Iplc is parallel to BC. By Claim 2, I1(, is also parallel to BC, so we have
that £ (Iplc, BC) = £(BC, I51}) = 0°. Thus, (x) is satisfied, so IgJpJclc is cyclic.

A
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Suppose now that Il is not parallel to BC' while IgJgJolc is cyclic. By Claim 2, Igl¢,
I17,, and BC concur at a point Z. As I and I¢ lie on segments Bl and C1, Z must lie outside
segment BC'. Since A is the intersection of the common external tangents of the incircle and
A-excircle of ABD and ZD is a common internal tangent of the incircle and A-excircle of ABD,
we have that (ZA,ZD; Z1g, Z1y) = —1. By (*), ZD bisects LIpZ1y, so LAZD = 90°: that
is, Z is the foot from A to BC'. But this implies that Z ABC or Z BC' A is obtuse, contradicting
the fact that AB < AC < BC. H

Comment. While we have written the solution using harmonic bundles for the sake of brevity, there
are ways to prove Claim 2 and obtain the final contradiction without the use of projective geometry.
Claim 2 can be proven using an application of Menelaus’s theorem, and the final contradiction can be
obtained using the fact that an excircle of a triangle is always larger than its incircle.

Solution 3. Let wp and we denote circles AIB and AIC, respectively. Introduce P, Q and X
as in Solution 1 and recall from Claim 1 in Solution 1 that P, Jg and I are collinear with
Jp lying on wg. From this, we can define Jg and Io in terms of X by I = XP n CI and
Jp # P as the second intersection of line X P with wg. Similarly, we can define Ig = XQ n BI
and Jo # (@) as the second intersection of line X @) with we. Note that this now detaches the
definitions of points Ig, I, Jg, and Jo from points D and E.

Let ¢ be a line passing through I. We now allow X to vary along ¢ while fixing AABC" and
points I, P, and (). We use the definitions from above to construct Ig, Ic, Jp, and Jo. We
will classify all cases where these four points are concyclic. Throughout the rest of the solution
we use directed angles and directed lengths.

For nondegeneracy reasons, we exclude cases where X = [ and X lies on line BC', which
means that Ig, Jg # B and I, Jo # C. We also exclude the cases where ¢ is tangent to either
wp or we. Similar results hold in these cases and they can be treated as limit cases.
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Clatm 1. Line IpJp passes through a fixed point on wg, and line IoJs passes through a fixed
point on we as X varies on /.

Proof. Let U # Jg be the second intersection of IgJp with wg. We have by the law of sines
that
sinIJgU  sinAlJplp  singJpllp Ilp  singJgIB 1l sinAXPQ Ilg
sinfUJgB  sinAIgJgB sinAJgBlgp IgB sinXJgBI IgB sinfXPI IgB’

We also have
Il sinfIQIp [IQ] singIQX |IQ)
IgB  sinAIpQB |BQ| sinAXQP |BQ|

Combining these and applying Ceva’s Theorem in API(Q) with point X, we get

sinf[JpU  sinAXPQ singIQX [IQ] sinXXIQ [IQ| sinx((,1Q) |IQ)|
sinAUJpB  singXPI sinAXQP |BQ| singAXIP |BQ| sinA((,IP) |BQ|

which is independent of the choice of X on ¢. As X1JgU + AUJgB = X1JgB = XIAB is
fixed, this is enough to show point U is fixed on wg.

Similarly, if we define V' # J& to be the second intersection of IoJo with we, we get that
V' is fixed on we. ]

Let G # X and H # X be the second intersections of ¢ with wp and we, respectively which
exist as we are assuming ¢ is not tangent to either wg or we.

Claim 2. Points U, G and @ are collinear and points V', H and P are collinear.
Proof. Taking X = G, we have Jg = G and Ig = X n BI. Both of these points lie on line QG
which, by Claim 1, shows that U, G, ) are collinear. Similarly, V', H, P are collinear. ]

Claim 3. Points Ig, I¢, Jg, Jo are concyclic if and only if points P, (), G, H are concyclic.
In particular, this depends only on ¢, not on the choice of X on /.

Proof. We have that

KIcJplp = £PJpU = £PGU = £PGQ
ZloJolp = 4V JeQ = AVHQ = A PHQ.

Thus £ 1cJglp = XlcJolp < X PGQ = X PH( which proves the claim. |
Claim 4. P, Q, G, H are concyclic if and only if ¢ € {IA, [P, 1Q,t} where t is the tangent to
circle BIC at 1.

Proof. When ¢ = [ A, we have G = H = A so the cyclic condition from Claim 3 holds. Similarly,

when ¢/ = IP or ¢/ =1Q, G =P or H = (@, respectively, so again the cyclic condition holds.
Now, consider the case where ¢ ¢ {I A, IP,1Q}. In this case it is straightforward to see that

the four points P, ), G, and H are distinct. We then have that QPG = X BPG = X BIG,

SO
PQGH concyclic <= AQHG = QPG < XQHG = ABIG < QH || BI.
We also have that XCQH = £CIH, so
¢ tangent to circle BIC <= ACIH = CBl < XCQH = CBI < QH || BI.

Hence, in this case P, (), G, H are concyclic if and only if £ is tangent to circle BIC', as claimed.

O
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We now revert to using points D and E to define points Iz, I, Jg, Jo, and X, returning
to the original set-up.
Claim 5. Let I' be the circle passing through P and () that is tangent to I P and I(), which
exists as [P = [Q)Q = [ A. Then X lies on I'. Furthermore, X lies on the same side of BC' as A
and does not lie on line BC'.

Proof. We have that
KXXPI =XJgPIl = XJgAl = K BAl — X BAJg = XJgAJc — £ JgAE
=X FEAJo = £JcAC = X JcQC = X XQP,

so circle X P() is tangent to I P. Similarly, circle X PQ is tangent to 1Q), so X lies on T.

As D lies in the interior of segment BC', I¢ lies in the interior of segment C'I. Since X is
the second intersection of Plo with I' and I P is tangent to I', X lies in the interior of PQ) on
I' on the same side of BC' as A. This implies the second part of the claim. O

By Claim 5, we cannot have ¢ € {IP,IQ} in the original problem. Furthermore, as shown
in Claim 2 of Solution 1, we have that X lies inside triangle / BC, which means that ¢ # t.
Thus, the only remaining possibility in Claim 4 is ¢ = AI. We then have

IplcJpJeo concyclic Sheim 3, PQGH concyclic LB X lies on Al,

finishing the problem.

Comment. The condition AB < AC < BC is used in an essential way in the solutions. In Solution 1,
it is used in the proof of Claim 3 to ensure that X lies in the interior of triangle IBC'. In Solution 2,
it is used in the final step to ensure that ZABC and /BCA cannot be obtuse. In Solution 3, it
is used to exclude the case ¢ = t. If the condition is removed, then the problem is no longer true:
whenever ZABC or ZBC A is obtuse, there exists a choice of D on BC such that IgJgJolc is cyclic
but Al, IgJc, and Jglc do not concur. This counterexample configuration can be constructed using
Solution 3 by letting X be the intersection of ¢ with ' that lies on the same side of BC as A and
constructing Ig, I, Jp, and Jo as described in the solution, from which we can reconstruct D.

Conversely, the problem holds whenever ZABC and ZBCA are both not obtuse, as can be seen
from Solution 2. This is thus the weakest possible condition on triangle ABC that is necessary for the
problem to be true.

A

P Z B | D / 0 C

When X lies on the tangent to circle IBC' at I, there is no contradiction in the proof of Claim 3 in
Solution 1: circles IIgJo and IJglc are distinct, and X is the radical centre of circles I1gJeo, IJglc,
and IgJplcJc. There is also no contradiction in the final step of Solution 2, and indeed Igl~ and BC
intersect at the foot of the altitude from A to BC.

There are no configuration issues with the direction (1) == (2). This implication holds without
any constraint on triangle ABC', and the proofs in Solutions 1 and 2 apply without any modification.
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Number Theory

Find all positive integers n with the following property: for all positive divisors d of n,
we have that d + 1 | n or d 4+ 1 is prime.
(Ghana)

Answer: n € {1,2,4,12}.

Solution 1. It is easy to verify that n = 1, 2, 4, 12 all work. We must show they are the only
possibilities. We write n = 28m, where k is a nonnegative integer and m is odd. Since m | n,
either m + 1 is prime or m + 1 | n.

In the former case, since m + 1 is even it must be 2, so n = 2F. If k > 3, we get a
contradiction, since 8 | n but 91 n. Hence k < 2, so n e {1,2,4}.

In the latter case, we have m + 1| 2*m and m + 1 coprime to m, and hence m + 1 | 2F. This
means that m + 1 = 27 with 2 < j < k (since j = 1 gives m = 1, which was considered earlier).

Then we have 2% + 1 { n: since 2’“ +1 is odd, it would have to divide m but is larger than m.
Hence, by the condition of the problem, 2¥ + 1 is prime. If ¥ = 2, j must be 2 as well, and
this gives the solution n = 12. Also, 2"t + 14 n for k > 2: since it is odd, it would have to
divide m. However, we have no solutions to 2871 + 1 | 29 — 1 with j < k: the left-hand side
is greater than the right unless j = k, when the left-hand side is just over half the right-hand
side.

Since we have 2% | n and 28 + 1 4 n, and 2*7! | n and 2¥~! + 1 { n, we must have 2% + 1
and 2¥~! 4+ 1 both prime. However, 2* + 1 is a multiple of three if a is odd, so we must have
2% +1 = 3 (impossible as this gives k = 1) or 2! + 1 = 3, which gives j = k = 2, whence
n=12.

Solution 2. We proceed as in Solution 1 as far as determining that n = 2¥(2/ — 1) with j < k.
Now, we have 2/ | n but 2/ + 14 n, as it is odd and does not divide 2/ — 1. Thus 27 + 1 is
prime. The theory of Fermat primes tells us we must have j = 2" with h > 0.
Then 22" — 1 is congruent to 3 or 6 (modulo 9) depending on whether A is odd or even,
respectively. In particular it is not divisible by 9, so n = 2k(22h — 1) is not divisible by 9; so we
must have k < 2, since if £ > 3 then 8 | n but 91 n with 9 not prime.

Solution 3. Let p be the smallest integer not dividing n. Since p — 1 is a divisor of n, p must
be a prime. Let 1 < r < p — 1 be the remainder of n modulo p. Since p —r < p, we have
p— 7| n, so we may con81der the divisor d = =
Since p | n —r, we have p | n+ p—r, whence p | d+ 1. Thus d + 11 n; so it must be prime.
On the other hand, this prime is divisible by p, so we conclude d + 1 = p, which means that
n=p-1F-r).
Then from p —2,p — 3 | n we get (p —2)(p — 3) | 2(p — r), from which we find

(p—2)p—3)<2(p—r)<2p-1).

Solving this quadratic inequality gives p < 5, which means that n € {1,2,4,8,12,16}. Of this
set, n = 8 and n = 16 are not solutions.

Solution 4. We suppose that n is not 1 or 2.

Since n | n and n + 1t n, we know that n + 1 is prime. Thus it is odd, so 2 | n; as n > 2,
we have § [n and § +1{n, so —+1 is prime. Thus it is also odd, so 4 | n.

We must then have 2+ 1| nor % +1 prime.
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In the former case, ¢ | 4(% + 1) —n, so § + 1 | 4. This means that n = 4 or n = 12.

In the latter case, § + 1 must be odd if n # 4. Thus we have n = 8m where 2m + 1, 4m +1,
8m + 1 are all prime; n = 8 does not work, so 3 | m (otherwise one of those numbers would be
divisible by 3). Thus 24 | n, so 25 | n as 25 is not prime.

Now suppose that p is the least positive integer not dividing n: as in Solution 3 we know
that p is prime, and what we have done so far shows that p > 7. If p> =1 = (p—1)(p + 1) is
the product of coprime integers less than p, it divides n, and p? is not prime so also divides n
(a contradiction); p — 1 and p + 1 are even and have no common factor higher than 2, so all
odd prime power divisors of their product are less than p and the only case where p? — 1 is not
a product of coprime integers less than p is when one of p — 1 and p + 1 is a power of 2, say
2™ (withm > 3). Iif p=2™—1, then 3p — 1 = 4(3 x 2™ 2 — 1) and 3 x 2™ 2 — 1 is an odd
integer less than p, so 3p — 1 | n and so 3p | n. Finally, if p = 2™ + 1, then m is even and
2p — 1 = 2™*1 + 1 is a multiple of 3; the only case where it is a power of 3 is when m = 2,
but we have m > 3, so 2p — 1 is a product of coprime integers less than p and again we have a
contradiction.

Solution 5. As in Solution 4, we deduce that if n > 2 then n must be even. We write
n =2-3%.r where k is a nonnegative integer and 3 { r.

Since r and 2r are both different and nonzero modulo 3, one of them must be congruent to
2 modulo 3. We'll say that it is ar, where a € {1, 2}.

Since ar | n, we must have that ar + 1 is either prime or a factor of n. In the first case,
ar +1 = 3 because 3 | ar + 1, and so n = 2- 3% - r, where r = 2/a is 1 or 2. Noting that we
must have k£ < 1 (else 9 | n but 10 1 n), we can examine cases to deduce that n € {2,4,12} are
the only possibilities.

Otherwise, ar + 1 | n. Since ar + 1 is coprime to r, we must in fact have that ar +1 | 2- 3,
and since 3 | ar + 1 by assumption we deduce that & > 1. In particular, 3* + 1 is an even
number that is at least 4, so is not prime and must divide n. As it is coprime to 3, we must in
fact have 3% + 1| 2r.

Let ¢; and ¢, be such that ¢;(ar +1) = 2-3% and ¢(3* +1) = 2r. We have that qiar < 2-3F
and ¢,3* < 2r, and multiplying these together gives ¢ qa < 4.

If a =2then q; = ¢ = 1, s0 2r + 1 = 2 - 3k, which is not possible (considering both sides
modulo 2).

If @ = 1 then r must be equivalent to 2 modulo 3, so ¢(3¥ + 1) = 2r gives that ¢ is
equivalent to 1 modulo 3, whence ¢, = 1. So we deduce that 2r = 3*¥ + 1. Thus, we deduce
that q;(3% + 3) = 4 - 3¥, which rearranges to give 3*"*(4 — ¢;) = ¢1, whence 3*7! < ¢; < 4 and
so k < 2. We can examine cases to deduce that n = 12 is the only possibility.
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Determine all finite, nonempty sets S of positive integers such that for every a, be S
there exists c € S with a | b + 2c.
(Netherlands)

Answer: The possible sets are S = {t} and S = {t, 3t} for any positive integer t.

Solution 1. Without loss of generality, we may divide all elements of & by any common
factor, after which they cannot all be even. As a 1 b+ 2¢ for a even and b odd, the elements
of § are all odd.

We now divide into three cases:

Case 1: |S| = 1.
The set S = {t} clearly works.
Case 2: |S| = 2.

Say & = {r,s} with r < s, so either s | 7 + 2r or s | r + 2s, and in either case s | 3r. We
cannot have s = 3r/2 as we assumed that r is odd, so s = 3r and S = {r,3r}, which clearly
works by examining cases for a and b.

Case 3: |S| = 3.

If all elements of S are odd then for any b, c € S, b+ 2¢ # b (mod 4). If a | b + 2¢ with
a=0b (mod 4), this means there exists k with b+ 2¢ = ka and k =3 (mod 4),s0 k > 3. If a is
the greatest element of S and b < a, we have b + 2¢ < 3a, a contradiction. Thus when a is the
greatest element, no b < a has b = a (mod 4) (and thus all elements other than the greatest
are congruent modulo 4).

Let d and e be the largest and second largest element of S respectively. Let f # d, e be any
other element of S. There is some c € S with e | f+2¢, and e # f+2¢ (mod 4), so f+2¢ = 3e,
so ¢ > e. Since e is the second largest element of S, ¢ = d, so e | f + 2d, and this holds for all
f €S with f < e, but can only hold for at most one such f. So |S| < 3.

Hence the elements of S are d > e > f, and by the discussion above without loss of generality
we may suppose these elements are all odd, e = f (mod 4) and d # e (mod 4). We have above
that e | f 4+ 2d. Furthermore, there exists some ¢ € § with d | f + 2¢, and ¢ # d as d > f so
dtf,soc<e;as f+2e < 3e, we have e > d/3. Since f + 2c¢ is odd and f + 2¢ < 3d, we have
f+2c=d.

Subcase 3.1: ¢ = f.
Hered =3f ande| f+2d=7f. Ase> fand e = f (mod 4), we have e = 7f/3 and the

elements are some multiples of {3,7,9}. But a = 7 and b = 9 have no corresponding value of c.

Subcase 3.2: ¢ = e.

Here d = f+2eand e | f +2d = 3f + 4e so e | 3f. But this is not possible with e > f and
e=f (mod 4).

Solution 2. As in Solution 1, we reduce to the case where all elements of S are odd. Since
all one-element sets satisfy the given conditions, we show that if |S| > 2, then |S| = 2 and
S = {t, 3t} for some positive integer t.

Let d be the largest element. For any e € S with e # d there must be a f € S such that
d | e+ 2f. This implies 2f = —e (mod d), hence 2f = d — e (mod d). Now d — e is even
(because all elements in S are odd) and d is odd, so % is an integer and we have f = %
(mod d). Further, 0 < % < d, while we must also have 0 < f < d, so f = %. We conclude
that for any e € § with e # d the integer % is also in S and not equal to d.

Denote by e; < ey < --- < e, < d the elements of S, where & > 1. Then =2 > d—es

2 2
.>d*ﬁ

2

are also elements of S, none of them equal to d. Hence we must have e; = d?’“ and
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e = d;el, = 2e+e1. We conclude e; = e, so k = 1, and also d = 2¢e;,+e; = 3ey.
Hence § = {e1,3e;} for some positive integer e;.

Solution 3. As in Solution 1, we reduce to the case where all elements of S are odd. Since
all one-element sets satisfy the given conditions, we show that if |S| > 2, then |S| = 2 and
S = {t, 3t} for some positive integer t.

Let d be the largest element, and let ¢ € S be any other element. We will say that z € S
(mod d) if the unique element y in {1, ..., d} such that + = y (mod d) is an element of S. Note
that by the choice of d being the largest element, if z # d, then x # 0 (mod d). The given
condition implies that if b € S, then —g € S (mod d). Repeating this gives —g eSS = g €S
(mod d), and by iterating, we have b e S = ﬁ € S (mod d) for all k. Since d is odd, there
is some g such that (=2)9 =1 (mod d), so by setting k = g — 1, we get that

foralld #e€S,—2eeS (mod d).

Now, if e > g, then —2e € § (mod d) and d — 2e < 0, so 2d — 2e € S, contradicting the
lack of even elements. Then e < ¢ for any e € S\ {d}, so we have e € S = d — 2e € S. Since
d — 2e # d, we must have d — 2e < %l, which rearranges to e > %.

Let A € (0,1) be a positive real number and suppose we have proved that e > Ad for any

e € S\ {d}. Then d — 2e > Ad, which rearranges to e < @. Then d — 2e < w, which

rearranges to e > *—-= H’\ . Defining \g = 7 and A = 1+’\’ L for i > 1, we have shown that for all
ee S \ {d} and all )\Z, e > \d. Now note that the sequence A s 1ncreasmg and bounded above
by 3, SO 1t converges to some limit ¢, Wthh satisfies ¢ = 11’[, so { = 3. Hence e > %, but then
d—2e>% 1mphes e < g, so e must be ¢ and we are done.

Comment. We can finish Solution 3 alternatively as follows: after showing that if e € S\ {d} then
d —2e € §\ {d}, note that
d 2d d
—2%)—— =" "2 =-2[e—=].
(d — 2e) 5= 3 e (e 3>

So consider e € S\ {d} maximising [e— %|. If e # ¢, them the above shows that |(d—2e) — 4| > |e — &|,
which is a contradiction. Thus S\ {d} is empty or equal to { }, which completes the proof
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Determine all sequences ai, as, ... of positive integers such that, for any pair of
positive integers m < n, the arithmetic and geometric means

an amam+1...an n—m-+
n—m+1

are both integers.
(Singapore)

Answer: The only such sequences are the constant sequences (which clearly work).

Solution 1. We say that an integer sequence by, by, ... 1is good if for any pair of positive
integers m < n, the arithmetic mean w is an integer. Then the condition in the
question is equivalent to saying that the sequences (a;) and (v,(a;)) for all primes p are good.

Claim 1. 1If (b;) is a good sequence, then n — m | b, — b, for all pairs of integers m, n.
Proof. This follows from n —m dividing b,, + b, 1 + - -+ + b,—1 and b1 + byso + - - - + by, and
then taking the difference. ]

Claim 2. 1If (b;) is a good sequence where some integer b occurs infinitely many times, then
(b;) is constant.

Proof. Say by, bp,, by, ... are equal to b. Then for all m, we have that b — by, = b,;, — by, is
divisible by infinitely many different integers n; —m, so it must be zero. Therefore the sequence
1s constant. ]

Now, for a given prime p, we look at the sequence (v,(a;)). Let k = v,(a;). Then Claim 1
tells us that a; = a1y, (mod p**?) for all n, which implies that v,(a,e+111) = k for all n.
We now have that k£ appears infinitely many times in this good sequence, so by Claim 2, the
sequence (v,(a;)) is constant. This holds for all primes p, so (@;) must in fact be constant.

Solution 2. As in Claim 1 of Solution 1, we have that a;,, = a; (mod r), which tells us that
the sequence a; is periodic modulo p with period p. Also, by a similar argument, we have that
a;yr/a; is the r™ power of a rational number.

Now suppose that for some i % j (mod p) we have a;, a; # 0 (mod p). As p and p — 1 are
coprime, we can find some ¢ =i (mod p), j'=j (mod p) such that p—1 |4 — 7. Then ay/a;
is a perfect (p — 1) power, so

ay =tuP™',  ay =toP!

for some positive integers ¢, u, v not divisible by p. By Fermat’s little theorem, u?~! and vP~1
must be 1 modulo p. So we must have

a; =ay =1 =ay = aj (mod p).

Thus all values of a; that are not divisible by p are congruent modulo p.

For the sum of p consecutive values to be divisible by p, this means that all the a; are
congruent modulo p. Since this is true for all primes p, the sequence must therefore be constant.
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Solution 3. Fix an arbitrary index m. First, we show that a,, divides a, for sufficiently
large n. Let n be sufficiently large that n > v,(a,,) + m for every prime p. By Claim 1 of
Solution 1, we have

Vp(am) = vp(an) (mod n —m).

Since vp(a,,) < n—m, it follows that v,(a,,) < v,(a,). This holds for every prime p, so a,, | ay.

Next, suppose that there is some index k such that a,, does not divide a;. By the previous,
there is a maximal such k£. Then ag1, ar,o, ... are all divisible by a,,. But now applying the
first condition gives

Um | Qg + Qg1 + -+ Qrray -1,

SO @y, divides ay, a contradiction. Therefore every term a,, is divisible by a,.

As m was arbitrary, we now have a,, | a,, and vice versa for all m, n. So the sequence must
be constant.
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Determine all positive integers a and b such that there exists a positive integer g such
that ged(a™ + b, 0™ + a) = g for all sufficiently large n.
(Indonesia)

Answer: The only solution is (a,b) = (1, 1).

Solution 1. It is clear that we may take g = 2 for (a,b) = (1, 1). Supposing that (a, b) satisfies
the conditions in the problem, let N be a positive integer such that ged(a™ + b,b" + a) = g for
alln > N.

Lemma. We have that g = ged(a,b) or g = 2ged(a, b).
Proof. Note that both a” + b and a™*! 4 b are divisible by ¢g. Hence

a(@™ +b) — ("™ +b)=ab—b=a(b—1)

is divisible by g. Analogously, b(a — 1) is divisible by g. Their difference a — b is then divisible
by g, so g also divides a(b— 1) + a(a —b) = a* — a. All powers of a are then congruent modulo
g,s0a+b=a"¥+b=0 (modg). Then 2a = (a +b) + (a —b) and 2b = (a + b) — (a — b)
are both divisible by ¢, so ¢ | 2gcd(a,b). On the other hand, it is clear that ged(a, b) | g, thus
proving the Lemma. O

Let d = ged(a, b), and write a = dx and b = dy for coprime positive integers = and y. We
have that

ged ((dz)™ + dy, (dy)" + dz) = dged (d" 2" + y,d" " 'y" + z) |

so the Lemma tells us that
ged (" 12" + y,d" Ty + x) <2

for all n > N. Defining K = d?zy+ 1, note that K is coprime to each of d, x, and y. By Euler’s
theorem, for n = —1 (mod ¢(K)) we have that

A" vy=d v ty=d i (1 +d*ry) =0 (mod K),

so K | d"'a2™ + y. Analogously, we have that K | d"~'y™ + z. Taking such an n which also
satisfies n > N gives us that

K| ged(d™ 'a™ +y,d" 'y +2) < 2.
This is only possible when d = = = y = 1, which yields the only solution (a,b) = (1,1).

Solution 2. After proving the Lemma, one can finish the solution as follows.
For any prime factor p of ab+ 1, p is coprime to a and b. Take an n = N such that n = —1
(mod p — 1). By Fermat’s little theorem, we have that

a"+b=at+b=a'(1+ab)=0 (mod p),
V'+a=b"t+a=b"1+ab)=0 (mod p),

then p divides g. By the Lemma, we have that p | 2gcd(a, b), and thus p = 2. Therefore, ab+ 1
is a power of 2, and a and b are both odd numbers.
If (a,b) # (1,1), then ab + 1 is divisible by 4, hence {a,b} = {—1,1} (mod 4). For odd
n = N, we have that
a*+b=0"+a=(-1)+1=0 (mod 4),

then 4 | g. But by the Lemma, we have that v5(g) < 15(2gced(a, b)) = 1, which is a contradiction.
So the only solution to the problem is (a,b) = (1, 1).



Shortlisted problems — solutions 103

Let S be a finite nonempty set of prime numbers. Let 1 = b; < by < --- be the

sequence of all positive integers whose prime divisors all belong to §. Prove that, for all but

finitely many positive integers n, there exist positive integers aq, as, ..., a, such that
L L
by by by, by by by,
(Croatia)
Solution 1. If S has only one element p, then b; = p*~! and we can easily find aq, ..., a,
with 2 = [Z?;ol pl] = Z;:ol -1 by taking a1 = ap = -+ = a,—1 = 1 and choosing a, =

Pt (p+p+ ..+ ")
More generally, observe that the sum of i over all 7 is

1 11
Zi:b—izn(1+;+?+...>

i t g

p
:Hﬁ'

peS
In particular, if n is large enough, then
Sl (55 ]
L=1 bﬂw Les p-1

For the remainder of the proof, we will only consider n large enough that this equality holds.
Next, we handle the special case S = {2, 3}, for which this product is 3. Start by setting

{1, if 2b; < by:
a; =

2, if 2b; > b,,.
Then,
a; 3—2t, if b, > 3%
i<n b_z a 0, otherwise.
va(b;)=t
As a result,

where T' is the largest ¢ > 0 with 3’ < b,. Thus, increasing a; by one (where b; = 37) gives a
sequence of a; that works.
Otherwise, we may assume that |S| > 1 and & # {2,3}, which means that the product

b :
Hpe s 727 1s not an integer. Indeed,

e if |S| > 2 then 2 divides the denominator at least twice and so divides the denominator
of the overall fraction;

e if |S| =2 and 2 ¢ S then 2 divides the denominator and not the numerator;
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e if S = {2,p} then the product is 2p/(p — 1) which is not an integer for p > 3.
It follows that for some fixed o > 0, we have that
p H p
N I g
Les p—1 1

from which it follows that

G
It will now suffice to prove the following claim.

Claim. Suppose that n is large enough, and let e, be the largest nonnegative integer such that
pP < b,. Let M = HpeS per. If u is a positive integer such that u/M > «, then there exist
nonnegative integers a; such that

a; u

—=b M '
The problem statement follows after replacing a; with a; + 1 for each .
To prove this, choose some constant ¢ such that Zpe s P ¢ < «, and suppose n is large enough
that p¢ < b, for each p € S; in particular, p¢ | M with M defined as above.

For each p € S, let 7, be such that b;, = p® and choose the smallest nonnegative integer a;,

satisfying
M
a (_) u
per

M
peP

Ep—C

pP

Such an a;, must exist and be at most p®~¢ indeed, is an integer coprime to p, so we

can take a;, to be equal to u times its multiplicative inverse modulo p®~¢. The sum of the
contributions to the sum from the a;, is at most

L

peS p peS

So, we have
u CL,‘p r

= =+ —_,
(& C
peES p HpeS p
where r is an integer because of our choice of a;, and r is nonnegative because of the bound

on u. Simply choose a; = r where b; = ]_[pe s p° to complete the proof.

Solution 2. We reduce to the claim as in Solution 1, and provide an alternative approach for
constructing the a;.

Let py € S be the smallest prime in S. Let zp = u/M. We construct a sequence zp, z1,
Za, ... and values of a; by the following iterative process: to construct z;41,

e select the largest prime p € S dividing the denominator of z;, and let ;x be the number of
times p divides the denominator of zj;

e choose the largest v such that pgp" < b, and let ¢ < n be such that b, = pgp";

e choose 0 < a; < p such that the denominator of z; — a;/b; has at most p — 1 factors of p,
and let zpy1 = 2z — a;/b;

e continue until pg is the only prime dividing the denominator of z.
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Note that we can always choose a; in step 3; by construction, z;b; has no factors of p in its
denominator, so must be realised as an element of Z,.
Each time we do this, b; > M /py by construction, so

PPo _ Pop1
M

b M

where p; is the largest prime in S. And the number of times we do this operation is at most

D e, < |S|log, (M),

peS
p>po
so the sum of the a;/b; we have assigned is at most |S|pop; log,(M)/M.
Choose n large enough that log,(M)/M < «; after subtracting the above choices of a;/b;
from u/M, we have a quantity of the form r/p,”°, where r is an integer by construction and
r is positive by the above bounds. Simply set a; = 7 where b; = p;”® to complete the proof.

Solution 3. As in Solution 1, we may handle |S| = 1 and § = {2, 3} separately; otherwise,
we can define o as we did in that solution. Also define e, to be the largest nonnegative integer
such that p < b, as we did in Solution 1.
We will show that, for n sufficiently large, we may choose some j < n, and positive inte-
gers a;, such that
”%_Zl<w
1#£] 1#£]
and all # are integer multiples of . We then set a; to be the least positive integer such that
the sum on the left is an integer, Wthh will obviously have the required value.
Concretely, choose j such that b; = ]_[pespef'/ ISI which is less than b, by construction.
For i # j, set a; = b;/ ged (bi, b;). We have

2 Z—<Z B

z;é] 1] 1]
a;>1

If a; > 1, then there must be some p € S for which pl®/ISI+1 | b, and so

a; 1 _ 1 P
b ged (bi,by)  plen/ISl < p/ST

where the last inequality follows from the fact that pr*! > b,,.
Now n < [1yes(log,(b) + 1) < (2105 5,9, s0

: IS]
2
= O bn
ai>l

and so we can choose n large enough that this quantity is less than «, as required.
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Let n be a positive integer. We say that a polynomial P with integer coefhi-
cients is n-good if there exists a polynomial () of degree 2 with integer coefficients such that
Q(k)(P(k) + Q(k)) is never divisible by n for any integer k.

Determine all integers n such that every polynomial with integer coefficients is an n-good
polynomial.
(France)

Answer: The set of such n is any n > 2.

Solution 1. First, observe that no polynomial is 1-good (because Q(X)(P(X)+Q(X)) always
has roots modulo 1) and the polynomial P(X) = 1 is not 2-good (because Q(X)(Q(X) + 1) is
always divisible by 2).

Now, if P is d-good with some @, then @ - (P + @) has no roots mod d. Therefore, it
certainly has no roots mod n for d | n, so P must be n-good. Consequently, it suffices to show
that all polynomials are n-good whenever n is an odd prime, or n = 4.

We start by handling the case n = 4. We will construct a @) such that Q(X) is never divisible
by 4 and Q(X) + P(X) is always odd; this will clearly show that P is 4-good. Note that any
function modulo 2 must be either constant or linear — in other words, there are a,b € {0,1}
such that P(X) = aX +b mod 2 for all X. If a = 0 then set Q(X) =4X?+b+ 1, and ifa =1
then set Q(X) = X2 + b+ 1; in all cases, Q will satisfy the required properties.

It remains to prove that any polynomial is p-good, where p is an odd prime. We will prove
that for any function f defined mod p, there is a quadratic ) with no roots mod p such that
Q(z) # f(x) mod p for all z; the statement about P then follows with f replaced by —P. For
the remainder of the proof, we will consider all equalities modulo p.

Suppose that a function f not satisfying the above exists; in other words, f has the property
that for any quadratic ) with no roots mod p, there is some x such that Q(z) = f(z). Without
loss of generality, we may assume that f has no roots mod p. To see why, suppose that f(u) =0
for some u, and let g be the function such that g(x) = f(x) for x # uw and g(u) = 1. For any Q
with no roots, we know that there is some x # u such that P(x) = f(z), and so P(x) = g(x)
for that choice of x. In particular, ¢ is also not p-good.

Now, suppose first that there is some nonzero ¢ such that ¢ is not in the image of f. Then
we may take Q(X) = pX? + t; this quadratic is never equal to f and is never zero. Thus,
f must be surjective onto the nonzero residues mod p. There are p choices for X and p — 1
nonzero residues mod p, so there must be some x; # z2 mod p such that f(z;) = f(x2), and
f is a bijection from the set of residues mod p not equal to x5 to the set of nonzero residues
mod p.

Now, note that we may choose any b and ¢ with b nonzero and replace f(X) with g(X) =
f(bX +¢); if there were some @ with no roots such that Q(z) # g(x) for all z, then Q(X /b—c¢/b)
would work for f. Choose b and ¢ such that bx; + ¢ =1 and bxy + ¢ = —1; such b and ¢ must
exist (we may take b = 2/(z1 — x2) and ¢ = (1 + z2)/(z2 — x1)). Renaming ¢ to f, we see that
we may assume f(1) = f(—1).

Let r" be a quadratic nonresidue mod p. Choose y # 0 such that f(y) = (1 —17")f(0), which
must exist as the right hand side is nonzero and 1 — 7’ is not equal to 1. Choose r = y?/r/,
which is a quadratic nonresidue.

Consider ¢(X) = f(X)/(X? —r). By definition, ¢(1) = ¢(—1) and ¢(0) = ¢(y), so there
are no more than p — 2 values in the image of ¢. Choose some nonzero a not in the image of ¢,
so f(X)/(X? —r) is never equal to a. The quadratic Q(X) = a(X? — r) is never zero and also
never equal to f(X), which completes the proof.
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Comment. In fact, there is no need to pass from polynomials P to functions f, as any function mod p
is a polynomial. Concretely, instead of passing from f to g, we would have instead replaced P(X) with
P(X)+1— (X —u)P~!, which is a polynomial that is unchanged except at X = w.

Solution 2. Given f a function mod p such that f is surjective onto the nonzero ele-
ments of Z/pZ and f(1) = f(—1), we provide an alternative approach to construct a nonzero
quadratic Q(X) such that Q(X) # f(X). Let r be the smallest quadratic nonresidue mod p
(so r — 1 is a square) and let a vary over the nonzero elements mod p; we will show that it is
possible to choose Q,(X) = a(X? — r) for some choice of a. Note that any quadratic of this
form will be nowhere zero.

Suppose that no such @, works. Then, for each a, there exists x such that a(z? —7) = f(z).
We may assume that x # —1, as if the equality holds for x = —1 then it also holds for = = 1.
However, a(z? — r) = f(x) implies a = f(z)/(z* — 1), so f(z)/(z* — r) must be a surjection
from {z # —1} to the set of nonzero a, and so this is a bijection. In particular, for each a, there
exists a unique z, such that f(z,) = a(z? —r).

We now have
[[t =11/

t#0 a#0
= Han(xz—r)
a#0 a#0
= Ha n (% —7r)
a#0 x#-—1

where the first equality follows because f is surjective onto the nonzero residues mod p, and
the second equality follows from the definition of x,. The two products cancel, which means
that [],,_ (> —7r) =1

However, we also get

2

(p—1)/2
[]@=r)=(r@a-r ( [] @ - 7"))

However, this is a contradiction as —r(1 — r) = r(r — 1), which is not a quadratic residue (by
our choice of r).

Comment. By Wilson’s theorem, we know that the product of the nonzero elements mod p is —1;
however, this fact was not necessary for the solution so we chose to present the solution without needing
to state it.

Comment. One can in fact show that

—4r
H (22 —7) = T

r#—1

—1
To do this, note that the polynomial X *3° — 1 has the % quadratic residues as roots, so we have

[T x-s9=x7% -1

s quad. res.

and so »
[T(x =2 = (x5 =1y
z#0
Since r is a quadratic nonresidue, by Euler’s criterion r’ = —1, and the result follows.

Therefore, one can replace the condition that r is the smallest quadratic nonresidue with the
condition that r is a quadratic nonresidue not equal to —% (which is possible for all p > 3).
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Solution 3. As in Solution 1, we will reduce to the case of p being an odd prime and f being
a function mod p with no roots which is surjective onto the set of nonzero residues mod p,
although we make no assumption about the values of x; and zo with f(z1) = f(z2).

We will again consider quadratics of the form Q5 .(X) = aR(bX +¢), where R(X) = X2 —r
for an arbitrary fixed quadratic nonresidue r, @ and b are nonzero mod p, and ¢ is any residue
mod p.

For each fixed b and ¢, there must be n pairs (a,z) such that aR(bx + ¢) = f(x), because
there must be exactly one value of a for each z. If any a appears in no such pair then we are
done, so assume otherwise. In other words, there must be exactly one a such that there are
two such x, and for all other a there is only one such z.

Thus, for each (b, c), there is exactly one unordered pair {x, 25} such that for some a we
have f(z;) = aR(bx; + ¢); in other words, there is exactly one unordered pair {1, x2} such that
f(z1)/R(bxy + ¢) = f(x2)/R(bxa + ¢).

Now, we show that for each unordered pair {x;, 25} there must be at least one pair (b, c)
such that f(z1)/R(bxy + ¢) = f(x2)/R(bxa + ¢). Indeed, let t = f(x1)/f(x2). There must be
some z,  such that R(z})/R(x}) = t; this is because R(X) and ¢tR(X) both take Z-' nonzero
values mod p, so the intersection must be nonempty by the pigeonhole principle. Choosing b
and ¢ such that bxy + ¢ = 2| and bxs + ¢ = 27, gives the claim.

Note further that if (b, ¢) and {x1, zo} satisfy the relation, then the same is true for (—b, —c)
and {z1,x} because R(bx + ¢) = R(—bx — ¢). Since b is nonzero, this means that each pair
{x1, 22} corresponds to at least two pairs (b, c). However, since there are p(p — 1) pairs (b, ¢)
with b nonzero and p(p—1)/2 unordered pairs {xy, x5}, each {x1, 25} must correspond to exactly
two pairs (b, ¢) and (—b, —c) for some (b, ¢).

Now, since the image of f has only p — 1 elements, there must be some x1, x5 such that
f(z1) = f(x2). Choose any b, ¢ such that bz + ¢ = —(bxs + ¢), so R(bxy + ¢) = R(bxs + ¢) and
so f(x1)/R(bxy + ¢) = f(x2)/R(bxay + ¢). There is such a pair b, ¢ for any nonzero b, so there
are at least p — 1 such pairs, and this quantity is greater than 2 for p > 5.

Finally, for the special case that p = 3, we observe that there must be at least one allowed
value for Q(z) for each z, so there must exist such a quadratic @) by Lagrange interpolation.

Comment. We may also handle the case p = 3 as follows. Recall that we may assume f is nonzero
and surjective onto {1,2} mod 3, so the image of f must be (1,1,2) or (1,2,2) in some order. Without
loss of generality f(1) = f(2), so we either have (f(0), f(1), f(2)) = (1,2,2) or (2,1,1). In the first
case, take Q(X) = 2X?2 + 2, and in the second case take Q(X) = X2 + 1.

In some sense, this is equivalent to the Lagrange interpolation approach, as in each case the
polynomial Q(X) can be determined by Lagrange interpolation.

Solution 4. Again, we reduce to the case of p being an odd prime and f being a function
mod p; we will show that there is a quadratic which is nowhere zero such that Q(x) = f(x) has
no root. We can handle the case of p = 3 separately as in Solution 3, so assume that p > 5.

We will prove the following more general statement: let p > 5 be a prime and let A;, As,
..., A, be subsets of Z/pZ with |A;| = 2 for all <. Then there exists a polynomial () € Z/pZ[X|
of degree at most 2 such that Q(i) ¢ A; for all i. Indeed, applying this statement to the sets
A; = {0, f(i)} (and adding pX? if necessary) produces a quadratic @ satisfying the desired
property.

Choose the coefficients of @) uniformly at random from Z/pZ, and let T be the random
variable denoting the number of i for which Q (i) € A;. Observe that for k < 3, we have

| ()] = ()

To see why, let k < 3. If S € Z/pZ has size k and (a;)s is a k-tuple, the probability that
Q(i) = a; on S is equal to p~*; for k = 3 this follows by Lagrange interpolation, and for k < 3
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it follows from the £ = 3 case by summing. The expectation is therefore equal to the number
of § € Z/pZ of size k times the probability that (i) € A; for each i € S, which is equal to the
right hand side as each A; has size 2.

Now, observe that we have the identity (t —1)(¢—3)(t —4) = —12+12(}) —10(}) +6(3), so

e[ ()] e[ ()] ()
e 0-1) ()

4 16

E[(T = 1)(T = 3)(T — 4)]

p P’

This is negative for p > 5. Because (t — 1)(t — 3)(t —4) > 0 for all integers ¢t > 0, it then
follows that T' = 0 with positive probability, which implies that there must exist some () with
Qi) ¢ A; for all i, as desired.

Comment. We do not have much freedom to choose a different polynomial in place of R(T) =
(T'—1)(T — 3)(T — 4) in this argument. Indeed, it can be shown (by comparing coefficients of (;)
that if R has degree at most 3, then the expected value of R(T) tends to #(R(4) + 2R(1)) as p
tends to infinity, so R must have both 1 and 4 as roots. In particular, R must be of the form
R(T) = (T'—=1)(T —4)(T — d) for some d > 3, and if d < 4 then the argument works for any p with
p>4/(4—d).
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Let Z-( denote the set of positive integers. Let f: Z-y — Z-o be a function satisfying
the following property: for m, n € Z-q, the equation

fmn)?* = f(m?) f(f(n)) f(mf(n))

holds if and only if m and n are coprime.

For each positive integer n, determine all the possible values of f(n).
(Japan)

Answer: All numbers with the same set of prime factors as n.

Common remarks. We refer to the given property as P(m,n). We use the notation rad(n)
for the radical of n: the product of the distinct primes dividing n.

Solution 1. We start with a series of straightforward deductions:
e From P(1,1), we have f(1) = F(1)f(f(1))%, so f(1) = F(£(1)

) = ).
e From P(1, f(1)), we have f(f(1))* = fF()S(f(f(W)S(F(f(1))), so f(f(F(1))) = 1.

e From P(1, f(f(1))), we have f(f(f(1)))* = fF()S(f(SFONSf(F(f(1)))), which sim-
plifies to 1 = f(1)3, s0 f(1) =1

e From P(1,n) we deduce f(n) = f(f(n)) for all n.

2

e From P(m, 1) we deduce f(m) = f(m?) for all m.

e Simplifying P(m,n), we have that
f(mn)* = f(m)f(n)f(mf(n))

if and only if m and n are coprime; refer to this as Q(m,n).

e From Q(m, f(n)), we have that f(mf(n)) = f(m)f(n) if and only if m and f(n) are
coprime; refer to this as R(m,n).

Claim. If f(a) =1, then a = 1.
Proof. If a # 1, then Q(a, a) gives f(a)? # f(a)?f(af(a)). If f(a) = 1, then both sides simplify
to 1, a contradiction. ]

Claim. If n # 1 then ged(n, f(n)) # 1.

Proof. If ged(n, f(n)) = 1, then Q(f(n),n) gives f(nf(n))? = f(n)3, and Q(n, f(n)) gives
f(nf(n))? = f(n)2f(nf(n)), which together yield f(n) =1 for a contradiction. O
Claim. For all n we have rad(n) | f(n).

Proof. For any prime p | n, write n = p°n’ with p { n/. From Q(p’,n’) we have f(n)? =
f@)f(n)f(p*f(n')). Since ged(p®, f(p)) # 1, it follows that p | f(p), so p | f(n), and thus
rad(n) | f(n). ]
Claim. If n is coprime to f(k), then f(n) is coprime to f(k).

Proof. From QUf(K), n) we have f(nf(k))® = f(k)F(n)f(f(k)f(n)); applying R(n,k) to the
LHS, we conclude that f(k)f(n) = f(f(k)f(n)). Applying R(f(n),k) we deduce that f(n) is
coprime to f(k), as required. 0

Claim. If p is prime then f(p) is a power of p.
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Proof. Suppose otherwise. We know that p | f(p); let ¢ # p be another prime with ¢ | f(p).

If, for some positive integer N, we have p t f(N), then f(p) is coprime to f(N), so ¢1 f(N),
so ¢t N; thus, if ¢ | N, then p | f(IN) (and in particular, p | f(q), by taking N = q).

Similarly, if ¢t f(N) then f(q) is coprime to f(N); asp | f(q), this means p{ f(N),sop{ N.
So if p | N, then ¢ | f(N).

Together with rad(n) | f(n), this means that for any n not coprime to pg, we have pq | f(n).

Let m = min{v,(f(x)) | z is not coprime to pq}, and let X be a positive integer not coprime
to pg such that v,(f(X)) = m. The argument above shows m > 1. We can write f(X) =
p"q? X', where y > 1, pt X" and ¢t X'. Since f(f(X)) = f(X) we have f(p"¢*X’') = p"¢" X".
Applying Q(p™, ¢"X") gives (p"¢"X")* = f(™)f(¢"X")f(p"f(¢?X")). The RHS is divisible
by p*™ but the LHS is only divisible by p?™, yielding a contradiction. O

Claim. For any integer n, rad(f(n)) = rad(n).

Proof. We already have that rad(n) | f(n), so it remains only to show that no other primes
divide f(n). If p is prime and p { n, the previous Claim shows that n is coprime to f(p), and
thus f(n) is coprime to f(p); that is, p 1 f(n). So exactly the same primes divide f(n) as
divide n. O

It remains only to exhibit functions that show all values of f(n) with rad(f(n)) = rad(n)
are possible. Given e(p) = 1 for each prime p, take

fn) =] [»®

pn

and we verify by examining exponents of each prime that this satisfies the conditions of the
problem.

Comment. A quicker but less straightforward proof that f(1) = 1 is to let f(n) = M be the least
value that f takes; then P(1,n) gives M? = f(n)? = f(1)f(f(n))?> = M3 so M =1 and f(1) = 1.

Solution 2. As in Solution 1, we see that there are indeed functions f satisfying the given
condition and producing all the given values of f(n), and we follow Solution 1 to show the
following facts:

o f(1)=1.
o f(m) = f(m?) for all m.
e f(n) = f(f(n)) for all n.
o f(mn)? = f(m)f(n)f(mf(n)) if and only if m and n are coprime; refer to this as Q(m, n).

Taking Q(m, n) together with Q(n, m) gives that f(mf(n)) = f(nf(m)) if m and n are coprime.
Suppose now that m is coprime to both n and f(n). We have f(mn)? = f(m)f(n)f(mf(n))
and squaring both sides gives

fmn)* =



If m is coprime to both n and f(n) but however n is not coprime to f(m), we have

f(nf(m )) F)f(Fm) f(nf(f(m)))
f(n)f(m)f(nf(m))
=f(nf( )%,

a contradiction. Thus, given that m and n are coprime, we know that m is coprime to f(n) if
and only if n is coprime to f(m). In particular, if p and ¢ are different primes, then p | f(q)
if and only if ¢ | f(p), and likewise, for any positive integer k, p | f(¢*) if and only if ¢ | f(p).
More generally, if p t n, then p | f(n) if and only if n is not coprime to f(p).

Now form a graph whose vertices are the primes, and where there is an edge between primes
p # q if and only if p | f(¢q) (and so ¢ | f(p)); every vertex has finite degree. For any integer n,
the primes dividing f(n) are all the primes that are neighbours of any prime ¢ | n, together
possibly with some further primes p | n.

If p and ¢ are different primes, we have f(pf(q)) = f(¢f(p)). The LHS is divisible by all
primes that (in the graph) are neighbours of p or neighbours of neighbours of ¢, and possibly
also by p and by some primes that are neighbours of ¢, and a corresponding statement with
p and g swapped applies to the RHS. Thus any prime that is a neighbour of a neighbour of ¢
must be one of: p, ¢, distance 1 from ¢, or distance 1 or 2 from p. For any prime r that is
distance 2 from ¢, there are only finitely many primes p that it is distance 2 or less from, so by
choosing a suitable prime p (depending on ¢) we conclude that every prime that is a neighbour
of a neighbour of ¢ is actually q itself or a neighbour of q.

So the connected components of the graph are (finite) complete graphs. If m is divisible
only by primes in one component, and n is divisible only by primes in another component, then
f(mn) = f(m)f(n). If n is divisible by more than one prime from a component, considering
the expression for f(mn)? as applied with successive prime power divisors of n shows that
f(n) is divisible by all the primes in that component. However, while f(p*) is divisible by all
the primes in the component of p except possibly for p itself, we do not yet know that p | f(p*).
We now consider cases for the order of a component.

For any prime p, we cannot have f(p*) = 1, because Q(p*, p*) gives

FO? = FON R R FY)),

and simplifying using f(m?) = f(m) results in 1 # 1. So for a component of order 1, f(p¥) is
a positive power of p, so has the same set of prime factors as p, as required.

Now consider a component of order at least 2. Since f(f(n)) = f(n), if the component
has order at least 3, then for any n # 1 whose prime divisors are in that component, f(n) is
divisible by all the primes in that component. If the component has order 2, we saw above
that this is true except possibly for n = p¥. However, if the primes in the component are p
and ¢, and f(p*) = ¢, then f(¢*) = f(f(p*)) = f(p*) = ¢*, which contradicts p | f(¢%). So for
any component of order at least 2, and any n # 1 whose prime divisors are in that component,
f(n) is divisible by all the primes in that component.

In a component of order at least 2, let m be the product of all the primes in that component,
and let ¢ be maximal such that m' | f(n) for all n # 1 whose prime divisors are in that
component; we have seen that ¢ > 1. If m and n are coprime numbers greater than 1, all of
whose prime divisors are in that component, then (m,n) tells us that m32 | f(mn). For any
n’ # 1, all of whose prime divisors are in that component, f(n') is divisible by all the primes in
that component, so can be expressed as such a product, so m®/? | f(f(n')) = f(n’). But this
means ¢ > 3t/2, a contradiction, so all components have order 1, and we are done.
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