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Problems
Algebra
A1. Determine all real numbers α such that the number

tαu ` t2αu ` ¨ ¨ ¨ ` tnαu

is a multiple of n for every positive integer n. (Here tzu denotes the greatest integer less than
or equal to z.)

(Colombia)
A2. Let n be a positive integer. Find the minimum possible value of

S “ 20x2
0 ` 21x2

1 ` ¨ ¨ ¨ ` 2nx2
n,

where x0, x1, . . . , xn are nonnegative integers such that x0 ` x1 ` ¨ ¨ ¨ ` xn “ n.
(China)

A3. Decide whether for every sequence panq of positive real numbers,

3a1 ` 3a2 ` ¨ ¨ ¨ ` 3an

p2a1 ` 2a2 ` ¨ ¨ ¨ ` 2anq2
ă

1

2024

is true for at least one positive integer n.
(China)

A4. Let Zą0 be the set of all positive integers. Determine all subsets S of t20, 21, 22, . . . u

for which there exists a function f : Zą0 Ñ Zą0 such that

S “ tfpa ` bq ´ fpaq ´ fpbq | a, b P Zą0u.

(Thailand)
A5. Find all periodic sequences a1, a2, . . . of real numbers such that the following

conditions hold for all n ě 1:

an`2 ` a2n “ an ` a2n`1 and |an`1 ´ an| ď 1.

(Kosovo)
A6. Let a0, a1, a2, . . . be an infinite strictly increasing sequence of positive integers such

that for each n ě 1 we have

an P

!an´1 ` an`1

2
,
?
an´1 ¨ an`1

)

.

Let b1, b2, . . . be an infinite sequence of letters defined as

bn “

#

A, if an “ 1
2
pan´1 ` an`1q;

G, otherwise.

Prove that there exist positive integers n0 and d such that for all n ě n0 we have bn`d “ bn.
(Czech Republic)

A7. Let Q be the set of rational numbers. Let f : Q Ñ Q be a function such that the
following property holds: for all x, y P Q,

fpx ` fpyqq “ fpxq ` y or fpfpxq ` yq “ x ` fpyq.

Determine the maximum possible number of elements of tfpxq ` fp´xq | x P Qu.
(Japan)
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A8. Let p ‰ q be coprime positive integers. Determine all infinite sequences a1, a2, . . . of
positive integers such that the following conditions hold for all n ě 1:

maxpan, an`1, . . . , an`pq ´ minpan, an`1, . . . , an`pq “ p and
maxpan, an`1, . . . , an`qq ´ minpan, an`1, . . . , an`qq “ q.

(Japan)
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Combinatorics
C1. Let n be a positive integer. A class of n students run n races, in each of which they

are ranked with no draws. A student is eligible for a rating pa, bq for positive integers a and b
if they come in the top b places in at least a of the races. Their final score is the maximum
possible value of a ´ b across all ratings for which they are eligible.

Find the maximum possible sum of all the scores of the n students.
(Australia)

C2. Let n be a positive integer. The integers 1, 2, 3, . . . , n2 are to be written in the cells
of an n ˆ n board such that each integer is written in exactly one cell and each cell contains
exactly one integer. For every integer d with d | n, the d-division of the board is the division
of the board into pn{dq2 nonoverlapping sub-boards, each of size d ˆ d, such that each cell is
contained in exactly one d ˆ d sub-board.

We say that n is a cool number if the integers can be written on the nˆ n board such that,
for each integer d with d | n and 1 ă d ă n, in the d-division of the board, the sum of the
integers written in each d ˆ d sub-board is not a multiple of d.

Determine all even cool numbers.
(Türkiye)

C3. Let n be a positive integer. There are 2n knights sitting at a round table. They
consist of n pairs of partners, each pair of which wishes to shake hands. A pair can shake hands
only when next to each other. Every minute, one pair of adjacent knights swaps places.

Find the minimum number of exchanges of adjacent knights such that, regardless of the
initial arrangement, every knight can meet her partner and shake hands at some time.

(Belarus)
C4. On a board with 2024 rows and 2023 columns, Turbo the snail tries to move from

the first row to the last row. On each attempt, he chooses to start on any cell in the first row,
then moves one step at a time to an adjacent cell sharing a common side. He wins if he reaches
any cell in the last row. However, there are 2022 predetermined, hidden monsters in 2022 of
the cells, one in each row except the first and last rows, such that no two monsters share the
same column. If Turbo unfortunately reaches a cell with a monster, his attempt ends and he
is transported back to the first row to start a new attempt. The monsters do not move.

Suppose Turbo is allowed to take n attempts. Determine the minimum value of n for which
he has a strategy that guarantees reaching the last row, regardless of the locations of the
monsters.

(Hong Kong)
C5. Let N be a positive integer. Geoff and Ceri play a game in which they start by writing

the numbers 1, 2, . . . , N on a board. They then take turns to make a move, starting with
Geoff. Each move consists of choosing a pair of integers pk, nq, where k ě 0 and n is one of the
integers on the board, and then erasing every integer s on the board such that 2k | n ´ s. The
game continues until the board is empty. The player who erases the last integer on the board
loses.

Determine all values of N for which Geoff can ensure that he wins, no matter how Ceri
plays.

(Indonesia)
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C6. Let n and T be positive integers. James has 4n marbles with weights 1, 2, . . . , 4n.
He places them on a balance scale, so that both sides have equal weight. Andrew may move a
marble from one side of the scale to the other, so that the absolute difference in weights of the
two sides remains at most T .

Find, in terms of n, the minimum positive integer T such that Andrew may make a sequence
of moves such that each marble ends up on the opposite side of the scale, regardless of how
James initially placed the marbles.

(Ghana)
C7. Let N be a positive integer and let a1, a2, . . . be an infinite sequence of positive

integers. Suppose that, for each n ą N , an is equal to the number of times an´1 appears in the
list a1, a2, . . . , an´1.

Prove that at least one of the sequences a1, a3, a5, . . . and a2, a4, a6, . . . is eventually
periodic.

(Australia)
C8. Let n be a positive integer. Given an n ˆ n board, the unit cell in the top left corner

is initially coloured black, and the other cells are coloured white. We then apply a series of
colouring operations to the board. In each operation, we choose a 2 ˆ 2 square with exactly
one cell coloured black and we colour the remaining three cells of that 2 ˆ 2 square black.

Determine all values of n such that we can colour the whole board black.
(Peru)
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Geometry
G1. Let ABCD be a cyclic quadrilateral such that AC ă BD ă AD and =DBA ă 90˝.

Point E lies on the line through D parallel to AB such that E and C lie on opposite sides of
line AD, and AC “ DE. Point F lies on the line through A parallel to CD such that F and C
lie on opposite sides of line AD, and BD “ AF .

Prove that the perpendicular bisectors of segments BC and EF intersect on the circumcircle
of ABCD.

(Ukraine)
G2. Let ABC be a triangle with AB ă AC ă BC, incentre I and incircle ω. Let X be the

point in the interior of side BC such that the line through X parallel to AC is tangent to ω.
Similarly, let Y be the point in the interior of side BC such that the line through Y parallel
to AB is tangent to ω. Let AI intersect the circumcircle of triangle ABC again at P ‰ A. Let
K and L be the midpoints of AB and AC, respectively.

Prove that =KIL ` =Y PX “ 180˝.
(Poland)

G3. Let ABCDE be a convex pentagon and let M be the midpoint of AB. Suppose
that segment AB is tangent to the circumcircle of triangle CME at M and that D lies on the
circumcircles of triangles AME and BMC. Lines AD and ME intersect at K, and lines BD
and MC intersect at L. Points P and Q lie on line EC so that =PDC “ =EDQ “ =ADB.

Prove that lines KP , LQ, and MD are concurrent.
(Belarus)

G4. Let ABCD be a quadrilateral with AB parallel to CD and AB ă CD. Lines AD
and BC intersect at a point P . Point X ‰ C on the circumcircle of triangle ABC is such
that PC “ PX. Point Y ‰ D on the circumcircle of triangle ABD is such that PD “ PY .
Lines AX and BY intersect at Q.

Prove that PQ is parallel to AB.
(Ukraine)

G5. Let ABC be a triangle with incentre I, and let Ω be the circumcircle of triangle BIC.
Let K be a point in the interior of segment BC such that =BAK ă =KAC. The angle bisector
of =BKA intersects Ω at points W and X such that A and W lie on the same side of BC, and
the angle bisector of =CKA intersects Ω at points Y and Z such that A and Y lie on the same
side of BC.

Prove that =WAY “ =ZAX.
(Uzbekistan)

G6. Let ABC be an acute triangle with AB ă AC, and let Γ be the circumcircle of ABC.
Points X and Y lie on Γ so that XY and BC intersect on the external angle bisector of =BAC.
Suppose that the tangents to Γ at X and Y intersect at a point T on the same side of BC
as A, and that TX and TY intersect BC at U and V , respectively. Let J be the centre of the
excircle of triangle TUV opposite the vertex T .

Prove that AJ bisects =BAC.
(Poland)
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G7. Let ABC be a triangle with incentre I such that AB ă AC ă BC. The second
intersections of AI, BI, and CI with the circumcircle of triangle ABC are MA, MB, and MC ,
respectively. Lines AI and BC intersect at D and lines BMC and CMB intersect at X. Suppose
the circumcircles of triangles XMBMC and XBC intersect again at S ‰ X. Lines BX and CX
intersect the circumcircle of triangle SXMA again at P ‰ X and Q ‰ X, respectively.

Prove that the circumcentre of triangle SID lies on PQ.
(Thailand)

G8. Let ABC be a triangle with AB ă AC ă BC, and let D be a point in the interior of
segment BC. Let E be a point on the circumcircle of triangle ABC such that A and E lie on
opposite sides of line BC and =BAD “ =EAC. Let I, IB, IC , JB, and JC be the incentres of
triangles ABC, ABD, ADC, ABE, and AEC, respectively.

Prove that IB, IC , JB, and JC are concyclic if and only if AI, IBJC , and JBIC concur.
(Canada)
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Number Theory
N1. Find all positive integers n with the following property: for all positive divisors d of n,

we have that d ` 1 | n or d ` 1 is prime.
(Ghana)

N2. Determine all finite, nonempty sets S of positive integers such that for every a, b P S
there exists c P S with a | b ` 2c.

(Netherlands)
N3. Determine all sequences a1, a2, . . . of positive integers such that, for any pair of

positive integers m ď n, the arithmetic and geometric means

am ` am`1 ` ¨ ¨ ¨ ` an
n ´ m ` 1

and pamam`1 ¨ ¨ ¨ anq
1

n´m`1

are both integers.
(Singapore)

N4. Determine all positive integers a and b such that there exists a positive integer g such
that gcdpan ` b, bn ` aq “ g for all sufficiently large n.

(Indonesia)
N5. Let S be a finite nonempty set of prime numbers. Let 1 “ b1 ă b2 ă ¨ ¨ ¨ be the

sequence of all positive integers whose prime divisors all belong to S. Prove that, for all but
finitely many positive integers n, there exist positive integers a1, a2, . . . , an such that

a1
b1

`
a2
b2

` ¨ ¨ ¨ `
an
bn

“

R

1

b1
`

1

b2
` ¨ ¨ ¨ `

1

bn

V

.

(Croatia)
N6. Let n be a positive integer. We say that a polynomial P with integer coeffi-

cients is n-good if there exists a polynomial Q of degree 2 with integer coefficients such that
QpkqpP pkq ` Qpkqq is never divisible by n for any integer k.

Determine all integers n such that every polynomial with integer coefficients is an n-good
polynomial.

(France)
N7. Let Zą0 denote the set of positive integers. Let f : Zą0 Ñ Zą0 be a function satisfying

the following property: for m, n P Zą0, the equation

fpmnq
2

“ fpm2
qfpfpnqqfpmfpnqq

holds if and only if m and n are coprime.

For each positive integer n, determine all the possible values of fpnq.
(Japan)
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Solutions

Algebra

A1. Determine all real numbers α such that the number

tαu ` t2αu ` ¨ ¨ ¨ ` tnαu

is a multiple of n for every positive integer n. (Here tzu denotes the greatest integer less than
or equal to z.)

(Colombia)

Answer: All even integers satisfy the condition of the problem and no other real number α
does so.

Solution 1. First we will show that even integers satisfy the condition. If α “ 2m where m
is an integer then

tαu ` t2αu ` ¨ ¨ ¨ ` tnαu “ 2m ` 4m ` ¨ ¨ ¨ ` 2mn “ mnpn ` 1q

which is a multiple of n.

Now we will show that they are the only real numbers satisfying the conditions of the
problem. Let α “ k ` ϵ where k is an integer and 0 ď ϵ ă 1. Then the number

tαu ` t2αu ` ¨ ¨ ¨ ` tnαu “ k ` tϵu ` 2k ` t2ϵu ` ¨ ¨ ¨ ` nk ` tnϵu

“
knpn ` 1q

2
` tϵu ` t2ϵu ` ¨ ¨ ¨ ` tnϵu

has to be a multiple of n. We consider two cases based on the parity of k.

Case 1: k is even.

Then knpn`1q

2
is always a multiple of n. Thus

tϵu ` t2ϵu ` ¨ ¨ ¨ ` tnϵu

also has to be a multiple of n.
We will prove that tnϵu “ 0 for every positive integer n by strong induction. The base case

n “ 1 follows from the fact that 0 ď ϵ ă 1. Let us suppose that tmϵu “ 0 for every 1 ď m ă n.
Then the number

tϵu ` t2ϵu ` ¨ ¨ ¨ ` tnϵu “ tnϵu

has to be a multiple of n. As 0 ď ϵ ă 1 then 0 ď nϵ ă n, which means that the number tnϵu
has to be equal to 0.

The equality tnϵu “ 0 implies 0 ď ϵ ă 1{n. Since this has to happen for all n, we conclude
that ϵ “ 0 and then α is an even integer.
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Case 2: k is odd.
We will prove that tnϵu “ n ´ 1 for every natural number n by strong induction. The base

case n “ 1 again follows from the fact that 0 ď ϵ ă 1. Let us suppose that tmϵu “ m ´ 1 for
every 1 ď m ă n. We need the number

knpn ` 1q

2
` tϵu ` t2ϵu ` ¨ ¨ ¨ ` tnϵu “

knpn ` 1q

2
` 0 ` 1 ` ¨ ¨ ¨ ` pn ´ 2q ` tnϵu

“
knpn ` 1q

2
`

pn ´ 2qpn ´ 1q

2
` tnϵu

“
k ` 1

2
n2

`
k ´ 3

2
n ` 1 ` tnϵu

to be a multiple of n. As k is odd, we need 1 ` tnϵu to be a multiple of n. Again, as 0 ď ϵ ă 1
then 0 ď nϵ ă n, so tnϵu “ n ´ 1 as we wanted.

This implies that 1 ´ 1
n

ď ϵ ă 1 for all n which is absurd. So there are no other solutions
in this case.

Solution 2. As in Solution 1 we check that for even integers the condition is satisfied. Then,
without loss of generality we can assume 0 ď α ă 2. We set Sn “ tαu ` t2αu ` ¨ ¨ ¨ ` tnαu.

Notice that

Sn ” 0 pmod nq (1)
Sn ” Sn ´ Sn´1 “ tnαu pmod n ´ 1q (2)

Since gcdpn, n ´ 1q “ 1, (1) and (2) imply that

Sn ” ntnαu pmod npn ´ 1qq. (3)

In addition,

0 ď ntnαu ´ Sn “

n
ÿ

k“1

´

tnαu ´ tkαu

¯

ă

n
ÿ

k“1

´

nα ´ kα ` 1
¯

“
npn ´ 1q

2
α ` n. (4)

For n large enough, the RHS of (4) is less than npn ´ 1q. Then (3) forces

0 “ Sn ´ ntnαu “

n
ÿ

k“1

´

tnαu ´ tkαu

¯

(5)

for n large enough.
Since tnαu ´ tkαu ě 0 for 1 ď k ď n, we get from (5) that, for all n large enough, all these

inequalities are equalities. In particular tαu “ tnαu for all n large enough, which is absurd
unless α “ 0.

Comment. An alternative ending to the previous solution is as follows.
By definition we have Sn ď αnpn`1q

2 , on the other hand (5) implies Sn ě αn2 ´ n for all n large
enough, so α “ 0.
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Solution 3. As in other solutions, without loss of generality we may assume that 0 ď α ă 2.
Even integers satisfy the condition, so we assume 0 ă α ă 2 and we will derive a contradiction.

By induction on n, we will simultaneously show that

tαu ` t2αu ` ¨ ¨ ¨ ` tnαu “ n2, (6)

and
2n ´ 1

n
ď α ă 2. (7)

The base case is n “ 1: If α ă 1, consider m “
P

1
α

T

ą 1, then

tαu ` t2αu ` ¨ ¨ ¨ ` tmαu “ 1

is not a multiple of m, so we deduce (7). Hence, tαu “ 1 and (6) follows.
For the induction step: assume the induction hypothesis to be true for n, then by (7)

2n ` 1 ´
1

n
ď pn ` 1qα ă 2n ` 2.

Hence,

n2
` 2n ď tαu ` t2αu ` ¨ ¨ ¨ ` tnαu ` tpn ` 1qαu “ n2

` tpn ` 1qαu ă n2
` 2n ` 2.

So, necessarily tpn ` 1qαu “ 2n ` 1 and

tαu ` t2αu ` ¨ ¨ ¨ ` tnαu ` tpn ` 1qαu “ pn ` 1q
2

in order to obtain a multiple of n ` 1. These two equalities give (6) and (7) respectively.
Finally, we notice that condition (7) being true for all n gives a contradiction.

Solution 4. As in other solutions without loss of generality we will assume that 0 ă α ă 2
and derive a contradiction. For each n, we define

bn “
tαu ` t2αu ` ¨ ¨ ¨ ` tnαu

n
,

which is a nonnegative integer by the problem condition and our assumption. Note that

tpn ` 1qαu ě tαu , t2αu , . . . , tnαu and tpn ` 1qαu ą tαu

for all n ą 1
α
. It follows that bn`1 ą bn ùñ bn`1 ě bn ` 1 for n ą 1

α
. Thus, for all such n,

bn ě n ` C

where C is a fixed integer. On the other hand, the definition of bn gives

bn “
tαu ` t2αu ` ¨ ¨ ¨ ` tnαu

n
ď

α ` 2α ` ¨ ¨ ¨ ` nα

n
“

α

2
pn ` 1q,

which is a contradiction for sufficiently large n.
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A2. Let n be a positive integer. Find the minimum possible value of

S “ 20x2
0 ` 21x2

1 ` ¨ ¨ ¨ ` 2nx2
n,

where x0, x1, . . . , xn are nonnegative integers such that x0 ` x1 ` ¨ ¨ ¨ ` xn “ n.
(China)

Answer: The minimum value is npn`1q

2
.

Solution 1. For a fixed n, let fpnq denote the minimum possible value of S. Consider the
following variant: among all infinite sequences of nonnegative integers x0, x1, . . . , only finitely
many of which are nonzero, satisfying x0 ` x1 ` ¨ ¨ ¨ “ n, let gpnq denote the minimum possible
value of

T “ 20x2
0 ` 21x2

1 ` 22x2
2 ` ¨ ¨ ¨ .

It is clear that gpnq ď fpnq. Conversely, it is easy to see that if a sequence x0, x1, . . . achieves
the minimum of gpnq, then x0 ě x1 ě ¨ ¨ ¨ and thus xn`1 “ xn`2 “ ¨ ¨ ¨ “ 0. In particular,
fpnq “ gpnq.

Now, we hope to get an inductive formula for gpnq.
Note that, in order to minimise T for n ě 1, we must have x0 ě 1 since the sequence pxiq

is nonincreasing. Note that the minimal value of

21x2
1 ` 22x2

2 ` ¨ ¨ ¨ “ 2p20x2
1 ` 21x2

2 ` ¨ ¨ ¨ q

over all infinite sequences of nonnegative integers with x1 ` x2 ` ¨ ¨ ¨ “ m is exactly 2gpmq. As
a result, for n ě 1 we have

gpnq “ min
x0Pt1,2,...,nu

`

x2
0 ` 2gpn ´ x0q

˘

.

We now prove gpnq “
npn`1q

2
by induction. It is clear that gp0q “ 0. Assume that this has

been proved for n “ 0, 1, . . . , N ´ 1. Then,

x2
0 ` 2gpN ´ x0q “ x2

0 ` pN ´ x0qpN ´ x0 ` 1q (1)
“ 2x2

0 ´ p2N ` 1qx0 ` NpN ` 1q

“
1

2

“

p2x0 ´ Nqp2x0 ´ N ´ 1q ` N2
` N

‰

.

The product of two consecutive integers p2x0 ´Nqp2x0 ´N ´ 1q is always nonnegative, and
it is zero precisely when 2x0 is the even number in tN,N ` 1u. Thus the minimum of the final
expression in equation (1) is 1

2
pN2 ` Nq, so gpNq “

NpN`1q

2
, completing the inductive proof.
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Solution 2. Consider the following table of numbers, where the row and column indices start
from 0, and ai,j “ 2ip2j ` 1q for i, j ě 0.

j “ 0 1 2 3 4 5 ¨ ¨ ¨

i “ 0 1 3 5 7 9 11
1 2 6 10 14 18 22
2 4 12 20 28 36 44
3 8 24 40 56 72 88
4 16 48 80 112 144 176
...

Every number can be written uniquely as a product of a power of 2 and an odd number so
every positive integer appears exactly once in the table above. It is easy to see that numbers
in each row and each column are strictly increasing. Since the sum of the first x odd positive
integers is x2, the sum of the first xk numbers in the kth row is 2kx2

k, the kth term appearing
in S.

Thus, the sum S can be interpreted as the result of taking a total of n numbers from the first
n rows of the table such that we take the leftmost xk numbers from row k (where

řn
k“1 xk “ n),

and then computing the sum of these n numbers. In particular, the minimum possible value
of S is the same as the sum of the smallest n numbers in this table, since every row and every
column of the table is strictly increasing.

Moreover, the smallest n numbers, namely 1, 2, . . . , n, appear in the first n rows, so the
minimum of S is

1 ` 2 ` ¨ ¨ ¨ ` n “
npn ` 1q

2
.

Comment. As can be seen from the table in Solution 2, the equality case of the problem is given by

xi “

Z

n

2i`1
`

1

2

^

.

So xi is the result of rounding n
2i`1 to the nearest integer. This also gives a proof of the identity

n “

8
ÿ

i“0

Z

n

2i`1
`

1

2

^

,

which can be separately proven by induction on n: when n is incremented by 1, exactly one term on
the right hand side, namely the one corresponding to i “ ν2pnq, increases by 1 while the others remain
the same.

Comment. If the condition that the xi are nonnegative integers is relaxed to the xi being nonnegative
reals, the problem can be solved by an application of the Cauchy-Schwarz inequality:

p20 ` 2´1 ` ¨ ¨ ¨ ` 2´nqp20x20 ` 21x21 ` ¨ ¨ ¨ ` 2nx2nq ě px0 ` ¨ ¨ ¨ ` xnq2 “ n2

ùñ 20x20 ` 21x21 ` ¨ ¨ ¨ ` 2nx2n ě
n2

2 ´ 2´n
.

The equality case for this relaxed problem is given by

xi “
2´in

2 ´ 2´n
«

Z

n

2i`1
`

1

2

^

.

In fact, when the terms in the optimal sequence for the real case are all rounded to the nearest integer,
we obtain the optimal sequence for the original problem. While thinking about the real case may guide
one towards the equality case of the original problem, it does not seem like it can be easily continued
into a full solution.
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A3. Decide whether for every sequence panq of positive real numbers,

3a1 ` 3a2 ` ¨ ¨ ¨ ` 3an

p2a1 ` 2a2 ` ¨ ¨ ¨ ` 2anq2
ă

1

2024
(1)

is true for at least one positive integer n.
(China)

Comment. The question can be asked in several forms, as follows:

(i) students could be asked, as above, to show the existence of such an n;

(ii) students could be asked to show that this happens for all sufficiently large n;

(iii) students could be given a concrete positive integer N and asked to show it for all n ą N .

The solutions below provide varying bounds for N .

Answer: The answer is “yes”: there is always such an n.

Common remarks. We write ε “ 1
2024

.

Solution 1. For every positive integer n, let Mn “ maxpa1, a2, . . . , anq. We first prove that

3a1 ` 3a2 ` ¨ ¨ ¨ ` 3an

p2a1 ` 2a2 ` ¨ ¨ ¨ ` 2anq2
ď

ˆ

3

4

˙Mn

. (2)

For i “ 1, 2, . . . , n, from
`

3
2

˘ai
ď

`

3
2

˘Mn we can obtain 3ai ď
`

3
4

˘Mn
¨ 2Mn ¨ 2ai . By summing up

over all i,
n

ÿ

i“1

3ai ď

ˆ

3

4

˙Mn

¨ 2Mn ¨

n
ÿ

i“1

2ai ď

ˆ

3

4

˙Mn

¨

ˆ n
ÿ

i“1

2ai
˙2

,

which is equivalent to (2).

Now let µ “ log4{3
1
ε
, so that µ is the positive real number with

`

3
4

˘µ
“ ε. If there is an

index n such that an ą µ, then Mn ě an ą µ, and hence

3a1 ` 3a2 ` ¨ ¨ ¨ ` 3an

p2a1 ` 2a2 ` ¨ ¨ ¨ ` 2anq2
ď

ˆ

3

4

˙Mn

ă

ˆ

3

4

˙µ

“ ε.

Otherwise we have 0 ă ai ď µ for all positive integers i, so

3a1 ` 3a2 ` ¨ ¨ ¨ ` 3an

p2a1 ` 2a2 ` ¨ ¨ ¨ ` 2anq2
ď

n ¨ 3µ

pn ¨ 1q2
“

3µ

n
.

If n ą
X

3µ

ε

\

, this is less than ε.

Comment. It is also possible to prove (2) by induction on n. The base case n “ 1 is clear. For the
induction step, after ordering a1, a2, . . . , an in increasing order as b1 ď b2 ď ¨ ¨ ¨ ď bn, it suffices, for
example, to verify that

3b1 ` 3b2 ` ¨ ¨ ¨ ` 3bn

p2b1 ` 2b2 ` ¨ ¨ ¨ ` 2bnq2
ď

3b1 ` 3b2 ` ¨ ¨ ¨ ` 3bn

p2b1 ` 2b2 ` ¨ ¨ ¨ ` 2bnqp2b2 ` ¨ ¨ ¨ ` 2bnq
ď

3b2 ` ¨ ¨ ¨ ` 3bn

p2b2 ` ¨ ¨ ¨ ` 2bnq2
.

The second inequality is equivalent to 3b1
n
ř

i“2
2bi ď 2b1

n
ř

i“2
3bi , which follows from

`

3
2

˘b1
ď

`

3
2

˘bi .
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Solution 2. We will combine two upper bounds.
First, start with the trivial estimate

3a1 ` ¨ ¨ ¨ ` 3an

p2a1 ` ¨ ¨ ¨ ` 2anq2
ď

3a1 ` ¨ ¨ ¨ ` 3an

4a1 ` ¨ ¨ ¨ ` 4an
.

By applying Jensen’s inequality to the convex function xlog3 4 we get

4a1 ` ¨ ¨ ¨ ` 4an

n
“

`

3a1
˘log3 4

` ¨ ¨ ¨ `
`

3an
˘log3 4

n
ě

ˆ

3a1 ` ¨ ¨ ¨ ` 3an

n

˙log3 4

,

so
3a1 ` ¨ ¨ ¨ ` 3an

p2a1 ` ¨ ¨ ¨ ` 2anq2
ď

3a1 ` ¨ ¨ ¨ ` 3an

4a1 ` ¨ ¨ ¨ ` 4an
ď

ˆ

n

3a1 ` ¨ ¨ ¨ ` 3an

˙log3 4´1

.

Hence, (1) holds true whenever

3a1 ` ¨ ¨ ¨ ` 3an ą

ˆ

1

ε

˙
1

log3 4´1

¨ n. (3)

Second, trivially
3a1 ` ¨ ¨ ¨ ` 3an

p2a1 ` ¨ ¨ ¨ ` 2anq2
ď

3a1 ` ¨ ¨ ¨ ` 3an

n2
,

so (1) is satisfied if
3a1 ` ¨ ¨ ¨ ` 3an ă ε ¨ n2. (4)

If n ą
`

1
ε

˘1` 1
log3 4´1 then

`

1
ε

˘
1

log3 4´1 ¨ n ă ε ¨ n2, and therefore at least one of (3) and (4) is
satisfied.

Solution 3. Define C “ log4{3
2
ε
, so that if ai ą C then 3ai ă ε

2
¨ 4ai . We divide the sequence

into “small” and “large” terms by how they compare to C: let

Sn “ ti ď n | ai ď Cu and Ln “ ti ď n | ai ą Cu.

Then (1) is equivalent to
ř

iPSn
3ai

`
ř

iPSn
2ai `

ř

iPLn
2ai

˘2 `

ř

iPLn
3ai

`
ř

iPSn
2ai `

ř

iPLn
2ai

˘2 ă
ε

2
`

ε

2
.

If Ln is nonempty, we have
ř

iPLn
3ai

`
ř

iPSn
2ai `

ř

iPLn
2ai

˘2 ă
ε

2
¨

ř

iPLn
4ai

`
ř

iPLn
2ai

˘2 ď
ε

2
,

and this also trivially holds when Ln is empty (in which case the LHS is zero).
Now suppose that n ě 2

ε

`

3
2

˘C . Note that 3ai ď
`

3
2

˘C
2ai for i P Sn, so we have

ř

iPSn
3ai

`
ř

iPSn
2ai `

ř

iPLn
2ai

˘2 ď

`

3
2

˘C ř

iPSn
2ai

`
ř

iPSn
2ai `

ř

iPLn
2ai

˘2 ď

`

3
2

˘C

ř

iPSn
2ai `

ř

iPLn
2ai

ă

`

3
2

˘C

n
ď

ε

2
,

so we have (1).
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Solution 4. For every index i “ 1, 2, . . . , n, apply the weighted AM-GM inequality to
numbers 2ai and pn ´ 1q with weights log2

3
2

« 0.585 and log2
4
3

« 0.415 as

2a1 ` 2a2 ` ¨ ¨ ¨ ` 2an ě 2ai ` pn ´ 1q

ą log2
3

2
¨ 2ai ` log2

4

3
¨ pn ´ 1q ě

`

2ai
˘log2

3
2 ¨ pn ´ 1q

log2
4
3

“

ˆ

3

2

˙ai

¨ pn ´ 1q
log2

4
3 ą

ˆ

3

2

˙ai

¨ pn ´ 1q
2{5.

By summing up for i “ 1, 2, . . . , n,

p2a1 ` ¨ ¨ ¨ ` 2anq
2

“

n
ÿ

i“1

2ai
`

2a1 ` 2a2 ` ¨ ¨ ¨ ` 2an
˘

ą pn ´ 1q
2{5

n
ÿ

i“1

3ai

so
3a1 ` 3a2 ` ¨ ¨ ¨ ` 3an

p2a1 ` 2a2 ` ¨ ¨ ¨ ` 2anq2
ă

1

pn ´ 1q2{5
.

If n ě
`

1
ε

˘5{2
` 1 then 1

pn´1q2{5 ă ε.
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A4. Let Zą0 be the set of all positive integers. Determine all subsets S of t20, 21, 22, . . . u

for which there exists a function f : Zą0 Ñ Zą0 such that

S “ tfpa ` bq ´ fpaq ´ fpbq | a, b P Zą0u.

(Thailand)

Answer: S can be any subset of size 1 or 2.

Common remarks. For this problem, it is convenient to use notation such as ta, b, cu for
multisets rather than sets, and the subset relation is likewise that for multisets. Both solutions
use the following property of powers of 2: if 2a ` 2b “ 2c ` 2d, then ta, bu and tc, du are the
same multiset. Define epa, bq “ log2pfpa ` bq ´ fpaq ´ fpbqq “ epb, aq. Thus,

fpa ` bq “ 2epa,bq
` fpaq ` fpbq.

Solution 1. Clearly S must be nonempty. We start with constructions when 1 ď |S| ď 2.

• If S “ t2ku, then take fpxq “ cx ´ 2k for any integer c ą 2k.

• If S “ t2k, 2ℓu where k ą ℓ, then take fpxq “ p2k ´ 2ℓqtαxu ´ 2ℓ, where α ą 2 is not an
integer. This works because tαpx ` yqu ´ ptαxu ` tαyuq P t0, 1u for all x and y, and takes
both values; the lower bound on α ensures the values of f are positive.

Observe that, inductively,

fpnq “ 2ep1,1q
` 2ep2,1q

` ¨ ¨ ¨ ` 2epn´1,1q
` nfp1q.

Lemma 1. For any positive integers n and k,

tep1, 1q, ep2, 1q, . . . , epk ´ 1, 1qu Ă tepn, 1q, epn ` 1, 1q, . . . , epn ` k ´ 1, 1qu.

Proof. We work by induction on k; in the case k “ 1, the first multiset is empty, which provides
our base case.

For the induction step, suppose k ě 2 and we know that

tep1, 1q, ep2, 1q, . . . , epk ´ 2, 1qu Ă tepn, 1q, epn ` 1, 1q, . . . , epn ` k ´ 2, 1qu.

By definition, fpn ` kq ´ fpnq ´ fpkq “ 2epn,kq, and using the first observation we see that

fpn`kq ´fpnq ´fpkq “
`

2epn,1q
` 2epn`1,1q

` ¨ ¨ ¨ 2epn`k´1,1q
˘

´
`

2ep1,1q
` 2ep2,1q

` ¨ ¨ ¨ ` 2epk´1,1q
˘

.

From the induction hypothesis, we may write

tepn, 1q, epn ` 1, 1q, . . . , epn ` k ´ 2, 1qu “ tep1, 1q, ep2, 1q, . . . , epk ´ 2, 1qu Y tau

for some a. Thus
2epn,kq

“ 2a ` 2epn`k´1,1q
´ 2epk´1,1q.

So tepn, kq, epk´1, 1qu “ ta, epn`k´1, 1qu. Thus epk´1, 1q “ a or epk´1, 1q “ epn`k´1, 1q,
and in either case we have our result. l

Lemma 2. The sequence ep1, 1q, ep2, 1q, ep3, 1q, . . . takes at most two different values.
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Proof. Suppose for a contradiction that k ě 2 is the least index with epk, 1q ‰ ep1, 1q, and that
some ℓ ą k has epℓ, 1q R tepk, 1q, ep1, 1qu. By Lemma 1, any block of k consecutive values of
the sequence has at least k ´ 1 values equal to ep1, 1q. This forces

epℓ ´ 1, 1q “ epℓ ´ 2, 1q “ ¨ ¨ ¨ “ epℓ ´ pk ´ 1q, 1q “ ep1, 1q

and
epℓ ` 1, 1q “ epℓ ` 2, 1q “ ¨ ¨ ¨ “ epℓ ` pk ´ 1q, 1q “ ep1, 1q.

But then the block epℓ´1, 1q, epℓ, 1q, epℓ`1, 1q, epℓ`2, 1q, . . . , epℓ`pk´1q, 1q has length k`1
and does not contain epk, 1q, a contradiction. l

Finally, for any a and b we have

fpa ` bq ´ fpaq ´ fpbq “
`

2epa,1q
` 2epa`1,1q

` ¨ ¨ ¨ 2epa`b´1,1q
˘

´
`

2ep1,1q
` 2ep2,1q

` ¨ ¨ ¨ ` 2epb´1,1q
˘

“ 2epi,1q

for some a ď i ď a ` b ´ 1. So |S| ď 2.

Comment. In the construction of functions, α ą 2 is only necessary if k “ ℓ`1, to make sure fp1q ‰ 0.
Otherwise, any nonintegral α ą 1 suffices.

Solution 2. Subsets of size 1 or 2 can be achieved as in Solution 1, and S must be nonempty.
We consider such a set S with |S| ě 3 and a corresponding function f in order to achieve a
contradiction. We will relate the epa, bq to values of epc, 1q with c`1 ă a` b, leading to a proof
of Lemma 2 from Solution 1 that does not depend on Lemma 1 from that solution.

Suppose a ą 1. We have fpa ` bq ´ fpaq ´ fpbq “ 2epa,bq and also fpaq ´ fpa ´ 1q ´ fp1q “

2epa´1,1q, so
fpa ` bq ´ fpa ´ 1q ´ fp1q ´ fpbq “ 2epa,bq

` 2epa´1,1q.

Similarly, fpa ` bq ´ fpa ´ 1q ´ fpb ` 1q “ 2epa´1,b`1q and fpb ` 1q ´ fp1q ´ fpbq “ 2epb,1q, so

fpa ` bq ´ fpa ´ 1q ´ fp1q ´ fpbq “ 2epa´1,b`1q
` 2epb,1q.

Thus either
epa, bq “ epa ´ 1, b ` 1q and epa ´ 1, 1q “ epb, 1q

or
epa, bq “ epb, 1q and epa ´ 1, b ` 1q “ epa ´ 1, 1q.

For n ě 4, we consider these possibilities as pa, bq ranges over all pairs with a ` b “ n. If the
first case holds for every such pair (that is, if epc, 1q “ epd, 1q for all c ` d “ n ´ 1), then all
the epa, bq for a` b “ n are equal (and the above equations do not constrain whether or not the
value is the same as any epc, 1q with c` 1 ă n). Otherwise, the values of epa, bq with a` b “ n
are fully determined by the values of epc, 1q for which epc, 1q ‰ epn ´ 1 ´ c, 1q, and are not all
equal.

Specifically, if epc, 1q “ j and epn´1´c, 1q “ k with j ‰ k, we have epc, n´cq “ j “ epn´c, cq
and epc ` 1, n ´ c ´ 1q “ k “ epn ´ c ´ 1, c ` 1q. Every other value of epa, bq with a ` b “ n
is then determined by the rule that epa, bq “ epa ´ 1, b ` 1q if epa ´ 1, 1q “ epb, 1q: if we
have epc, 1q ‰ epn ´ 1 ´ c, 1q, and epc1, 1q ‰ epn ´ 1 ´ c1, 1q, but epd, 1q “ epn ´ 1 ´ d, 1q

for all c ă d ă c1, then if c ă c1 ´ 1 we have epc1 ´ 1, n ´ pc1 ´ 1qq “ epc1, n ´ c1q, then if
c ă c1 ´ 2 we have epc1 ´ 2, n ´ pc1 ´ 2qq “ epc1 ´ 1, n ´ pc1 ´ 1qq “ epc1, n ´ c1q, and so on
until epc ` 1, n ´ c ´ 1q “ epc1, n ´ c1q (yielding a contradiction if epn ´ c ´ 1, 1q ‰ epc1, 1q;
such a contradiction also arises trivially if c ` 1 “ c1 and epn ´ c ´ 1, 1q ‰ epc1, 1q). If c is the
least integer such that epc, 1q ‰ epn ´ 1 ´ c, 1q, the values of epa, bq with a ă c are similarly
determined to be equal to epc, n ´ cq (and likewise for a ą n ´ c).
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In other words, if we list the values in ascending order of a from 1 to n ´ 1, any gaps
between the pairs of adjacent values determined when epc, 1q ‰ epn ´ 1 ´ c, 1q are filled with
copies of the previously determined adjacent values, and if the values on either side of such a
gap are different, we have a contradiction (including in the degenerate cases where the pairs
are adjacent or overlap, if c ` 1 “ c1). Note in particular that every value of epa, bq is a value
of epc, 1q for some c with c ` 1 ď a ` b.

If |S| ě 3, that means that epc, 1q takes at least three different values. Let m be such that
epm, 1q does not equal any epc, 1q for c ă m, and there are exactly two different values of epc, 1q

for c ă m (and thus m ě 3).
Because epm, 1q does not equal any epc, 1q for c ă m, we have that all epa, bq for a`b “ m`1

are equal, and epc, 1q “ epd, 1q for all c ` d “ m. We now consider the values of epa, bq for
a`b “ m`2 determined by the above rules. Since epm, 1q ‰ ep1, 1q, we have ep1,m`1q “ ep1, 1q

and ep2,mq “ epm, 1q. If there were any other epd, 1q ‰ epm ` 1 ´ d, 1q, consider the one with
minimal d ą 1; because epm, 1q ‰ epd, 1q, we arrive at a contradiction. So every epc, 1q “ epd, 1q

for c ` d “ m ` 1 except for epm, 1q ‰ ep1, 1q. But these equalities form a path connecting all
epc, 1q for c ă m:

ep1, 1q “ epm ´ 1, 1q “ ep2, 1q “ epm ´ 2, 1q “ ep3, 1q “ ¨ ¨ ¨

which contradicts the assumption we made that there were exactly two different values of epc, 1q

for c ă m.

Solution 3. Constructions for 1 ď |S| ď 2 are shown in Solution 1, and S must be nonempty.
We suppose |S| ě 3 to derive a contradiction.
Claim 1. epa, bq, epb, cq, and epa, cq can take at most two different values.
Proof. By expanding fpa ` b ` cq in three different ways, we get

2epa,bq
` 2epc,a`bq

“ 2epb,cq
` 2epa,b`cq

“ 2epa,cq
` 2epb,a`cq.

The result follows from the equality of the three multisets of exponents. l

For Claims 2 to 4, we fix k and let N be the smallest integer such that epa,N ´ a ` 1q “ k
for some a ď N .
Claim 2. For any b with b ď N , we must have epb,N ´ b ` 1q “ k.
Proof. Suppose that epa,N ´ a ` 1q “ k and a ă b. Expanding fpa ` pb ´ aq ` N ´ b ` 1q in
two different ways, we see that

2epa,b´aq
` 2epb,N´b`1q

“ 2epN´b`1,b´aq
` 2epN´a`1,aq.

By the minimality of N , we must have epb,N ´ b ` 1q “ epN ´ a ` 1, aq. The case of a ą b
follows by replacing a and b with N ´ a ` 1 and N ´ b ` 1. l

Claim 3. epa, 1q “ epN ´ a ` 1, 1q for any a satisfying 1 ă a ă N .
Proof. By Claim 2, epa,N´a`1q “ k. Then by Claim 1, epa,N´a`1q, epa, 1q, and epN´a`1, 1q

can take at most two different values. But by the minimality of N , we must have epa,N´a`1q ‰

epa, 1q “ epN ´ a ` 1, 1q. l

Claim 4. epa, 1q “ epN ´ a, 1q for any a satisfying 1 ď a ă N .
Proof. By Claim 2, epa,N ´ a ` 1q “ epa ` 1, N ´ aq “ k. Expanding fp1 ` a ` pN ´ aqq in
two different ways, we see that

2ep1,aq
` 2epa`1,N´aq

“ 2ep1,N´aq
` 2epN´a`1,aq.

Therefore ep1, aq “ ep1, N ´ aq, as required. l

If |S| ě 3, then there exist 1 ă Nk ă Nℓ where Nk and Nℓ are the minimal values corre-
sponding to k and ℓ. But Claims 3 and 4 imply that epa, 1q is constant for all 1 ď a ă Nℓ,
which is a contradiction.
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A5. Find all periodic sequences a1, a2, . . . of real numbers such that the following
conditions hold for all n ě 1:

an`2 ` a2n “ an ` a2n`1 and |an`1 ´ an| ď 1.

(Kosovo)

Answer: The sequences satisfying the conditions of the problem are:

c,´c, c,´c, . . . ,

d, d, d, d, . . . ,

where c P r´1
2
, 1
2
s and d is any real number.

Solution 1. We rewrite the first condition as

an`2 ` an`1 “ pan`1 ` anqpan`1 ´ an ` 1q. (1)

If there exists a positive integer m such that am`1 ` am “ 0, then from equation (1) we have
an`1 ` an “ 0 for all positive integers n ě m. By the fact that the sequence pai`1 ` aiq is
periodic, we get ai`1 ` ai “ 0 for every positive integer i. Thus the sequence paiq is of the form
c, ´c, c, ´c, . . . for some |c| ď 1

2
.

Now suppose that an`1 ` an ‰ 0 for every positive integer n. Let T be the period of the
sequence. From equation (1) we have

1 “

T
ź

i“1

ai`2 ` ai`1

ai`1 ` ai
“

T
ź

i“1

pai`1 ´ ai ` 1q.

Combining with the second condition |ai`1 ´ ai| ď 1, we have ai`1 ´ ai ` 1 ą 0. Using the
AM-GM inequality we get

1 “

T
ź

i“1

pai`1 ´ ai ` 1q ď

˜

řT
i“1pai`1 ´ ai ` 1q

T

¸T

“ 1.

So the equality holds, and thus we get

a2 ´ a1 “ a3 ´ a2 “ ¨ ¨ ¨ “ aT`1 ´ aT ,

which means that paiq is a constant sequence.
So all sequences satisfying the conditions of the problem are those listed above.
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Solution 2. Define sn “ an`1 ` an and dn “ an`1 ´ an, so the original sequence is periodic if
and only if both these sequences are periodic. Rearranging the given conditions yields sn`1 “

snp1 ` dnq and dn`1 “ dnpsn ´ 1q, with |dn| ď 1 for all n.
If sn “ 0 for some n then si “ 0 for all i ě n, and for the sequence to be periodic we must

have all si “ 0 and the sequence c, ´c, c, ´c, . . . , for some |c| ď 1
2
. Similarly, if dn “ 0 for

some n and the sequence is periodic, then all di “ 0 and the sequence is c, c, c, . . . .
We claim those are the only periodic sequences, so suppose for contradiction that we have

a periodic sequence where no si or di is 0. Under this hypothesis, we will prove that psnq, pdnq

have the following properties.

1. All sn are positive numbers. As |dn| ď 1 and sn`1 “ snp1`dnq ‰ 0, it follows that dn ą ´1
and that all sn have the same sign (all positive or all negative). If all sn are negative,
then |dn`1| “ |dnpsn ´ 1q| ą |dn|, so |di| is a strictly increasing sequence, contradicting
periodicity.

2. Whenever dn ą 0 we have 0 ă sn ă 1. Suppose for contradiction that we have dn ą 0
and sn ě 1 for some n. Since dn`1 ‰ 0 we have sn ą 1, and then dn`1 ą 0, sn`1 ą sn ą 1.
Inductively, all di ą 0 for i ě n, and si`1 ą si for i ě n, contradicting periodicity.

Now we can get the desired contraction as follows. Suppose that the period of paiq is T , then
řT

i“1 di “ aT`1´a1 “ 0, hence there is an n such that dn ą 0. By property 2 we get 0 ă sn ă 1,
and in particular sn ă 2. Suppose that we have si ă 2. If di ă 0, then si`1 “ sip1`diq ă si ă 2;
if di ą 0, then by property 2 we have 0 ă si ă 1, and then si`1 “ sip1 ` diq ď 2si ă 2. In both
cases we get si`1 ă 2, and then by induction we get sk ă 2 for all k ě n. But then we have
|dk`1| “ |dkpsk ´ 1q| ă |dk|, which contradicts the fact that pdkq is periodic.

So the only periodic sequences are the two listed above.

Solution 3. Note that if an`1 “ ´an for any n, then an`2 “ an “ ´an`1, yielding the first
answer by periodicity. Also, if an`1 “ an for any n, then an`2 “ an “ an`1, yielding the second
answer by periodicity. If an`2 “ an for any n, then a2n “ a2n`1 so an`1 “ ˘an and one of those
two cases applies. Henceforth, we will assume that the sequence is neither one of the answers
and an ‰ an`1, ´an`1, an`2 for all n for the rest of the solution. Note that the recursion
rearranges to

an`2 ´ an`1 “ pa2n`1 ´ an`1q ´ pa2n ´ anq “ pan`1 ´ anqpan`1 ` an ´ 1q. (2)

Claim 1. We have that an ď 1
2

for all n.
Proof. First, we cannot have an ą 1

2
for all n. Otherwise, an`1 ` an ´ 1 is positive for all n, so

(2) implies that an`2 ´ an`1 has the same sign as an`1 ´ an for all n. This would mean that
the sequence is monotonic, contradicting periodicity.

On the other hand, if an`1 ď 1
2

and an`2 ą 1
2
, then

a2n`1 “ an`2 ` a2n ´ an ě an`2 ´
1

4
ą

1

4
ùñ |an`1| ą

1

2
,

where we use the fact that t2 ´ t ě ´1
4

for all t P R. As an`1 ď 1
2
, this means that an`1 ă ´1

2

so |an`1 ´ an`2| ą 1, a contradiction. l

The identity (2) now implies that an`2 ´ an`1 and an`1 ´ an are of opposite signs for all n,
so that an ă an`1 ðñ an`1 ą an`2.
Claim 2. We have that an ą 0 ðñ an`1 ď 0: that is, the signs of the sequence are
alternating.
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Proof. First, it cannot be the case that an ą 0 for all n. Indeed, then we would have from
Claim 1 that |an`1 ` an ´ 1| ă 1 for all n, which by (2) means that |an`1 ´ an| is strictly
decreasing in n, a contradiction of the sequence’s periodicity. It also cannot be the case that
an ď 0 for all n, as then we would have that |an`1 ` an ´ 1| ą 1 for all n (noting that by the
nonconstant assumption we will never have an “ an`1 “ 0) so |an`1 ´ an| is strictly increasing
in n.

Hence, if the signs of an are not alternating, then by periodicity there exists n with an ą 0
and an`1, an`2 ď 0 or an, an`1 ą 0 and an`2 ď 0. In either scenario, we have that

a2n ´ an “ a2n`1 ´ an`2 ě a2n`1 ě 0 ùñ an ą 1

as an is positive and an`2 is nonpositive.
In the former case, we have that an ´ an`1 ą 1, a contradiction. In the latter case, as

an`1 ą an`2, we must have that an ă an`1. But then we have that an`1 ´an`2 ą an ´an`2 ą 1,
a contradiction. l

Note now that we cannot have an`2 ą ´an`1 ą an for any n, as we would then have

a2n`1 ´ a2n “ an`2 ´ an ą ´an`1 ´ an ą 0 ùñ an ´ an`1 ą 1,

a contradiction. Similarly, we cannot have an ą ´an`1 ą an`2 for any n, as we would then
have

a2n ´ a2n`1 “ an ´ an`2 ą an ` an`1 ą 0 ùñ an ´ an`1 ą 1.

Having ruled out these scenarios, we may conclude that |an`1| is not between |an| and |an`2|

for any n.
Let k be an index such that |ak| is maximal. Note that we cannot have |ak´2| “ |ak|, as that

would imply that ak´2 “ ak by Claim 2. We also cannot have |ak´2| ď |ak´1|, as that would
imply that |ak´1| is between |ak´2| and |ak|. Hence, we must have that |ak´1| ă |ak´2| ă |ak|. As
|ak| is maximal, we cannot have ak “ 0. If ak ą 0, then we have that ak´ak´2 “ a2k´1´a2k´2 ă 0,
a contradiction. If ak ă 0, then we have that ak ´ ak`2 “ a2k ´ a2k`1 ą 0, a contradiction.
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A6. Let a0, a1, a2, . . . be an infinite strictly increasing sequence of positive integers such
that for each n ě 1 we have

an P

!an´1 ` an`1

2
,
?
an´1 ¨ an`1

)

.

Let b1, b2, . . . be an infinite sequence of letters defined as

bn “

#

A, if an “ 1
2
pan´1 ` an`1q;

G, otherwise.

Prove that there exist positive integers n0 and d such that for all n ě n0 we have bn`d “ bn.
(Czech Republic)

Common remarks. In fact, all known proofs proceed by showing that the eventual period of
the sequence pbnq always consists of some number of occurrences of G (possibly zero) followed
by an A.

Such sequences of any period p ě 1 exist. Indeed, consider the sequence

. . . , kp, kp´1
pk ` 1q, . . . , kpk ` 1q

p´1, pk ` 1q
p, pk ` 1q

p´1
pk ` 2q, . . . .

The Tournament of the Towns, in Spring 2009 (Junior A-Level Paper, problem 4), considered
sequences satisfying exactly this fairly natural criterion. However, it asked a vastly easier
question about them: in the language of this problem, it asked whether every such sequence
had pbnq eventually constant. The answer to that problem is “no”, as heavily hinted by the
statement of this problem. Thus, at least so far as the Problem Selection Committee knows,
this is a novel problem about a family of sequences which has been previously considered.

Solution 1. We will show that the eventual period of sequence pbnq consists of any fixed
number of occurrences of G (possibly zero) followed by a single A.

We look at the ratios of consecutive terms of the sequence panq. Let C and D be coprime
positive integers such that a1{a0 “ pC ` Dq{C. If bn “ G then an{an´1 “ an`1{an. If bn “ A
and an{an´1 “ pC ` kDq{pC ` pk ´ 1qDq for some positive integer k then

an`1

an
“

2an ´ an´1

an
“

C ` pk ` 1qD

C ` kD
.

Thus, by induction, there is a sequence of positive integers pknq for n ě 1 which satisfies
an{an´1 “ pC ` knDq{pC ` pkn ´ 1qDq for all positive integers n. Moreover, we have k1 “ 1
and

kn`1 “

#

kn, if bn “ G;

kn ` 1, if bn “ A.

If there are only finitely many values of n such that bn “ A then the problem statement
obviously holds (we can choose d “ 1). Thus, we may assume that bn “ A for infinitely many
n. This means that the sequence pknq attains all positive integer values. Given a value q ě 1,
denote by mq the last index where value q occurs, that is, the index such that kmq “ q and
kmq`1 “ q ` 1.

Our aim is to prove that the sequence of differences pmq`1 ´mqq is eventually constant. We
first show that it is bounded above. To that end, fix t ě 1 (we will choose a suitably large t
later on) and consider a sequence sptq0, sptq1, . . . defined for q ě 1 by sptqq “ amq{pC ` qDqt.
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We note two properties of sptqq. First, simple algebra gives

sptqq`1 “
amq`1

pC ` pq ` 1qDqt
“

amq

pC ` pq ` 1qDqt

ˆ

C ` pq ` 1qD

C ` qD

˙mq`1´mq

“
amq

pC ` qDqt

ˆ

C ` pq ` 1qD

C ` qD

˙mq`1´mq´t

“ sptqq

ˆ

C ` pq ` 1qD

C ` qD

˙mq`1´mq´t

.

It follows that

sptqq ą sptqq`1

sptqq “ sptqq`1

sptqq ă sptqq`1

,

/

.

/

-

if and only if

$

’

&

’

%

mq`1 ´ mq ă t,

mq`1 ´ mq “ t,

mq`1 ´ mq ą t.

Second, suppose that mq`1 ´ mq ě t for some positive integer q. We claim that in that case
sptqq is a positive integer. Indeed, we have

amq`t “ amq

ˆ

C ` pq ` 1qD

C ` qD

˙t

,

because kmq`1 “ kmq`2 “ ¨ ¨ ¨ “ kmq`t “ q ` 1. Since C ` pq ` 1qD and C ` qD are coprime we
have that

sptqq “
amq

pC ` qDqt

is an integer.
We choose T ě 1 such that spT q1 ă 1 (which exists since C ` D ą 1). Then, by induction

we can show that spT qq ă 1 for all q. Indeed, since spT qq ă 1, it is not a positive integer; this
means that mq`1 ´ mq ă T by the second property above. Hence by the first property above
we have spT qq`1 ă spT qq ă 1, as needed.

This means that mq`1 ´ mq ă T for all q. Thus there is a largest integer T 1 ď T with the
property that an equality mq`1 ´ mq “ T 1 holds for infinitely many values of q.

Therefore, for all sufficiently large values of q we have the inequality mq`1 ´ mq ď T 1,
which by the first property implies that the sequence spT 1q is decreasing from some point on.
Moreover, we know that the sequence attains infinitely many integer values since there are
infinitely many values of q for which we have the equality mq`1 ´ mq “ T 1. As a consequence,
the sequence spT 1q is constant from some sufficiently large index Q onwards.

This in turn means that the equality mq`1 ´mq “ T 1 holds for all q ě Q. Note that bn “ A
is equivalent to the fact that n “ mq for some integer q. Thus, the sequence pbnq is periodic for
n ě Q with period T 1, and the proof is complete.

Solution 2. First, observe that the statement holds immediately if bn “ G for all n; otherwise,
there must be some n for which bn “ A. Without loss of generality, we may assume that n “ 1,
as we can translate the sequence without affecting the statement.

We define an arithmetic sequence ppnq by taking p0 “ a0{ gcdpa0, a1q and p1 “ a1{ gcdpa0, a1q.
Note that p0 ă p1, and hence that ppnq is an increasing sequence of positive integers, and also
that p2 “ a2{ gcdpa0, a1q.

We also define a sequence of positive integers dn “ an ´ an´1 and a sequence of positive
rational numbers qn “ an{an´1.

Then the following facts are immediate consequences of the definitions:

• if bn “ G, then qn`1 “ qn and dn`1 “ dnqn;

• if bn “ A, then dn`1 “ dn;
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• q1 “ p1{p0;

• if bn “ A and qn “ pi{pi´1, then qn`1 “ pi`1{pi.
Now, let ki be the number of integers n for which bn “ G and qn “ pi{pi´1. If some ki is

infinite then bn is eventually always G; otherwise, all values of ki are nonnegative integers.
The sequence of values for dn can be written as

d0, d0
p1
p0
, . . . , d0

ˆ

p1
p0

˙k1

, d0

ˆ

p1
p0

˙k1 p2
p1
, . . . , d0

ˆ

p1
p0

˙k1 ˆ

p2
p1

˙k2

, . . .

and in particular all terms in this sequence are positive integers. Furthermore, pi and pi`1 are
coprime for all i, so the following sequence consists entirely of positive integers:

u0 “ d0p
´k1
0 ,

u1 “ d0p
´k1
0 pk1´k2

1 ,

u2 “ d0p
´k1
0 pk1´k2

1 pk2´k3
2 ,

... .

We will prove that ki is eventually constant, which implies that the sequence of bn is eventu-
ally periodic with period consisting of k copies of G followed by an A (where k is that constant
value).

Observe that either ki is unbounded, or is bounded with eventual maximum k for some
constant k. In the second case, let r0 be minimal such that kr0 “ k; in the first case let r0 “ 0.
We will construct an infinite sequence of integers as follows:

• If kri`1 ě kri , then ri`1 “ ri ` 1

• If kri`1 ă kri , then ri`1 is the minimal positive integer greater than ri such that kri`1
ě kri .

Observe that in the second case, such an ri`1 must exist by our construction of r0.
We claim that uri`1

ď uri with equality only if kri`1 “ kri (so ri`1 “ ri ` 1). Indeed, if
kri`1 ě kri then

uri`1
“ uri`1 “ urip

kri´kri`1
ri ď uri ,

with equality if and only if kri “ kri`1.
Otherwise, we have

uri`1

uri

“ p
kri´kri`1
ri p

kri`1´kri`2

ri`1 ¨ ¨ ¨ p
kri`1´1´kri`1

ri`1´1 ,

so we just need to show that the right hand side is strictly less than 1. But this follows because

p
kri´kri`1
ri p

kri`1´kri`2

ri`1 ¨ ¨ ¨ p
kri`1´1´kri`1

ri`1´1 ă p
kri´kri`2

ri`1 p
kri`2´kri`3

ri`2 ¨ ¨ ¨ p
kri`1´1´kri`1

ri`1´1

ă p
kri´kri`3

ri`2 p
kri`3´kri`4

ri`3 ¨ ¨ ¨ p
kri`1´1´kri`1

ri`1´1

...

ă p
kri´kri`1

ri`1´1

ď 1,

where each inequality besides the last follows from the fact that pj ă pj`1 and kri ą kj for
j ă ri`1, and the last follows from the fact that kri ď kri`1

.
Finally, the sequence uri is an infinite nonincreasing sequence of positive integers so must

eventually be constant, yielding the claim.

Comment. The two solutions above differ in approach, but have some overlap in the structure they
reveal. Indeed, the C ` nD of Solution 1 is the pn of Solution 2, while the mr`1 ´ mr of Solution 1
turns out to be equal to the kr of Solution 2.
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A7. Let Q be the set of rational numbers. Let f : Q Ñ Q be a function such that the
following property holds: for all x, y P Q,

fpx ` fpyqq “ fpxq ` y or fpfpxq ` yq “ x ` fpyq.

Determine the maximum possible number of elements of tfpxq ` fp´xq | x P Qu.
(Japan)

Answer: 2 is the maximum number of elements.

Common remarks. Suppose that f is a function satisfying the condition of the problem.
We will use the following throughout all solutions.

• a „ b if either fpaq “ b or fpbq “ a,

• a Ñ b if fpaq “ b,

• P px, yq to denote the proposition that either fpx ` fpyqq “ fpxq ` y or fpfpxq ` yq “

x ` fpyq,

• gpxq “ fpxq ` fp´xq.

With this, the condition P px, yq could be rephrased as saying that x` fpyq „ fpxq ` y, and
we are asked to determine the maximum possible number of elements of tgpxq | x P Qu.

Solution 1. We begin by providing an example of a function f for which there are two values
of gpxq. We take the function fpxq “ txu ´ txu, where txu denotes the floor of x (that is, the
largest integer less than or equal to x) and txu “ x ´ txu denotes the fractional part of x.

First, we show that f satisfies P px, yq. Given x, y P Q, we have

fpxq ` y “ txu ´ txu ` tyu ` tyu “ ptxu ` tyuq ` ptyu ´ txuq;

x ` fpyq “ txu ` txu ` tyu ´ tyu “ ptxu ` tyuq ` ptxu ´ tyuq.

If txu ă tyu, then we have that the fractional part of fpxq ` y is tyu ´ txu and the floor is
txu ` tyu, so fpxq ` y Ñ x ` fpyq. Likewise, if txu ą tyu, then x ` fpyq Ñ fpxq ` y. Finally,
if txu “ tyu, then fpxq ` y “ x ` fpyq “ txu ` tyu is an integer. In all cases, the relation P is
satisfied.

Finally, we observe that if x is an integer then gpxq “ 0, and if x is not an integer then
gpxq “ ´2, so there are two values for gpxq as required.

Now, we prove that there cannot be more than two values of gpxq. P px, xq tells us that
x ` fpxq „ x ` fpxq, or in other words, for all x,

fpx ` fpxqq “ x ` fpxq. (1)

We begin with the following lemma.

Lemma 1. f is a bijection, and satisfies

fp´fp´xqq “ x. (2)
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Proof. We first prove that f is injective. Suppose that fpx1q “ fpx2q; then P px1, x2q tells us
that fpx1q `x2 „ fpx2q `x1. Without loss of generality, suppose that fpx1q `x2 Ñ fpx2q `x1.

But fpx1q “ fpx2q, so fpfpx1q ` x2q “ fpfpx2q ` x2q “ fpx2q ` x2 by (1). Therefore,
fpx2q ` x1 “ fpx2q ` x2, as required.

Now, (1) with x “ 0 tells us that fpfp0qq “ fp0q and so by injectivity fp0q “ 0.
Applying P px,´fpxqq tells us that 0 „ x ` fp´fpxqq, so either 0 “ fp0q “ x ` fp´fpxqq

or fpx ` fp´fpxqqq “ 0 which implies that x ` fp´fpxqq “ 0 by injectivity. Either way, we
deduce that x “ ´fp´fpxqq, or x “ fp´fp´xqq by replacing x with ´x.

Finally, note that bijectivity follows immediately from (2). l

Since f is bijective, it has an inverse, which we denote f´1. Rearranging (2) (after replacing x
with ´x) gives that fp´xq “ ´f´1pxq. We have gpxq “ fpxq ` fp´xq “ fpxq ´ f´1pxq.

Suppose gpxq “ u and gpyq “ v, where u ‰ v are both nonzero. Define x1 “ f´1pxq and
y1 “ f´1pyq; by definition, we have

x1
Ñ x Ñ x1

` u

y1
Ñ y Ñ y1

` v.

Putting in P px1, yq gives x`y „ x1 `y1 `v, and putting in P px, y1q gives x`y „ x1 `y1 `u.
These are not equal since u ‰ v, and x ` y may have only one incoming and outgoing arrow
because f is a bijection, so we must have either x1 ` y1 ` u Ñ x ` y Ñ x1 ` y1 ` v or the same
with the arrows reversed. Swapping px, uq and py, vq if necessary, we may assume without loss
of generality that this is the correct direction for the arrows.

Also, we have ´x1 ´ u Ñ ´x Ñ ´x1 by Lemma 1. Putting in P px ` y,´x1 ´ uq gives
y „ y1 ` v ´ u, and so y1 ` v ´ u must be either y1 ` v or y1. This means u must be either 0
or v, and this contradicts our assumption about u and v.

Comment. Lemma 1 can also be proven as follows. We start by proving that f must be surjective.
Suppose not; then, there must be some t which does not appear in the output of f . P px, t ´ fpxqq

tells us that t „ x ` fpt ´ fpxqq, and so by assumption fptq “ x ` fpt ´ fpxqq for all x. But setting
x “ fptq ´ t gives t “ fpt ´ fpfptq ´ tqq, contradicting our assumption about t.

Now, choose some t such that fptq “ 0; such a t must exist by surjectivity. P pt, tq tells us that
fptq “ t, or in other words t “ 0 and fp0q “ 0. The remainder of the proof is the same as the proof
given in Solution 1.

Solution 2. We again start with Lemma 1, and note fp0q “ 0 as in the proof of that lemma.
P px,´fpyqq gives x`fp´fpyqq „ fpxq´fpyq, and using (2) this becomes x´y „ fpxq´fpyq.

In other words, either fpx ´ yq “ fpxq ´ fpyq or x ´ y “ fpfpxq ´ fpyqq. In the latter case, we
deduce that

fp´px ´ yqq “ fp´fpfpxq ´ fpyqqq

fpy ´ xq “ fp´fpfpxq ´ fpyqqq

“ fpyq ´ fpxq.

Thus, fpyq ´ fpxq is equal to either fpy ´ xq or ´fpx ´ yq. Replacing y with x ` d, we deduce
that fpx ` dq ´ fpxq P tfpdq,´fp´dqu.

Now, we prove the following claim.

Claim. For any n P Zą0 and d P Q, we have that either gpdq “ 0 or gpdq “ ˘gpd{nq.
In particular, if gpd{nq “ 0 then gpdq “ 0.
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Proof. We first prove that if gpd{nq “ 0 then gpdq “ 0. Suppose that gpd{nq “ 0. Then
fpd{nq “ ´fp´d{nq and so fpx ` d{nq ´ fpxq “ fpd{nq for any x. Applying this repeatedly,
we deduce that fpx ` dq ´ fpxq “ nfpd{nq for any x. Applying this with x “ 0 and x “ ´d
and adding gives fpdq ` fp´dq “ 0, so gpdq “ 0, and in particular the claim is true whenever
gpdq “ 0.

Now, select n P Zą0 and d P Q such that gpdq ‰ 0, and observe that we must have gpd{nq ‰

0. Observe that for any k P Z we have that fpkd{nq ´ fppk ´ 1qd{nq P tfpd{nq,´fp´d{nqu.
Let Ai be the number of k P Z with i ´ n ă k ď i such that this difference equals fpd{nq.

We deduce that for any i P Z,

fpid{nq ´ fpid{n ´ dq “
ÿ

i´năkďi

fpkd{nq ´ fppk ´ 1qd{nq

“ Aifpd{nq ´ pn ´ Aiqfp´d{nq

“ ´nfp´d{nq ` Aigpd{nq.

Since gpd{nq is nonzero, this is a nonconstant linear function of Ai. However, there are only
two possible values for fpid{nq ´ fpid{n ´ dq, so there must be at most two possible values
for Ai as i varies. And since Ai`1 ´ Ai P t´1, 0, 1u, those two values must differ by 1 (if there
are two values).

Now, we have

fpdq ´ fp0q “ ´nfp´d{nq ` Angpd{nq, and
fp0q ´ fp´dq “ ´nfp´d{nq ` A0gpd{nq.

Subtracting these (using the fact that fp0q “ 0) we obtain

fpdq ` fp´dq “ pAn ´ A0qgpd{nq

“ ˘gpd{nq,

where the last line follows from the fact that gpdq is nonzero. l

It immediately follows that there can only be one nonzero number of the form gpxq up
to sign; to see why, if gpdq and gpd1q are both nonzero, then for some n, n1 P Zą0 we have
d{n “ d1{n1. But

gpdq “ ˘gpd{nq “ ˘gpd1
q.

Finally, suppose that for some d, d1 we have gpdq “ c and gpd1q “ ´c for some nonzero c.
So we have

fpdq ` fp´dq ´ fpd1
q ´ fp´d1

q “ 2c

which rearranges to become pfpdq ´ fpd1qq ´ pfp´d1q ´ fp´dqq “ 2c.
Each of the bracketed terms must be equal to either fpd´ d1q or ´fpd1 ´ dq. However, they

cannot be equal since c is nonzero, so gpd´ d1q “ fpd´ d1q ` fpd1 ´ dq “ ˘2c. This contradicts
the assertion that gp´xq “ ˘c for all x.

Solution 3. As in Solution 1, we start by establishing Lemma 1 as above, and write f´1pxq “

´fp´xq for the inverse of f , and gpxq “ fpxq ´ f´1pxq.
We now prove the following.

Lemma 2. If gpxq ‰ gpyq, then gpx ` yq “ ˘pgpxq ´ gpyqq.
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Proof. Assume x and y are such that gpxq ‰ gpyq. Applying P px, f´1pyqq gives x ` y „

fpxq ` f´1pyq, and applying P pf´1pxq, yq gives x ` y „ f´1pxq ` fpyq.

Observe that

pfpxq ` f´1
pyqq ´ pf´1

pxq ` fpyqq “ pfpxq ´ f´1
pxqq ´ pfpyq ´ f´1

pyqq

“ gpxq ´ gpyq.

By assumption, gpxq ‰ gpyq, and so fpxq ` f´1pyq ‰ f´1pxq ` fpyq. Since f is bijective,
this means that these two values must be fpx ` yq and f´1px ` yq in some order, and so
gpx` yq “ fpx` yq ´ f´1px` yq must be their difference up to sign, which is either gpxq ´ gpyq

or gpyq ´ gpxq. l

Claim. If x and q are rational numbers such that gpqq “ 0 and n is an integer, then gpx`nqq “

gpxq.

Proof. If gpbq “ 0 and gpaq ‰ gpa ` bq, then the lemma tells us that gpbq “ ˘pgpa ` bq ´ gpaqq,
which contradicts our assumptions. Therefore, gpaq “ gpa ` bq whenever gpbq “ 0.

A simple induction then gives that gpnbq “ 0 for any positive integer n, and gpnbq “ 0 for
negative n as gpxq “ gp´xq. The claim follows immediately. l
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Lemma 3. There cannot be both positive and negative elements in the range of g.
Proof. Suppose that gpxq ą 0 and gpyq ă 0. Let S be the set of numbers of the form mx ` ny
for integers m,n. We first show that gpSq has infinitely many elements. Indeed, suppose
gpSq is finite, and let a P S maximise g and b P S maximise ´g. Then a ` b P S, and
gpa ` bq “ gpaq ´ gpbq or gpbq ´ gpaq. In the first case gpa ` bq ą gpaq and in the second case
gpa ` bq ă gpbq; in either case we get a contradiction.

Now, we show that there must exist some nonzero rational number q with gpqq “ 0. Indeed,
suppose first that a`fpaq “ 0 for all a. Then gpaq “ fpaq `fp´aq “ 0 for all a, and so g takes
no nonzero value. Otherwise, there is some a with a`fpaq ‰ 0, and so (1) yields that fpqq “ 0
for q “ a` fpaq ‰ 0. Noting that fp´qq “ 0 from Lemma 1 tells us that gpqq “ 0, as required.

Now, there must exist integers s and s1 such that xs “ qs1 and integers t and t1 such that
yt “ qt1. The claim above gives that the value of gpmx ` nyq depends only on the values of m
mod s and n mod t, so gpmx ` nyq can only take finitely many values. l

Finally, suppose that gpxq “ u and gpyq “ v where u ‰ v have the same sign. Assume
u, v ą 0 (the other case is similar) and assume u ą v without loss of generality.

P pf´1pxq, f´1pyqq gives x´ y „ f´1pxq ´ f´1pyq “ fpxq ´ fpyq ´ pu´ vq, and P px, yq gives
x´ y „ fpxq ´ fpyq. u´ v is nonzero, so fpx´ yq and f´1px´ yq must be fpxq ´ fpyq ´ pu´ vq

and fpxq ´ fpyq in some order, and since gpx ´ yq must be nonnegative, we have

fpxq ´ fpyq ´ pu ´ vq Ñ x ´ y Ñ fpxq ´ fpyq.

Then, P px ´ y, f´1pyqq tells us that px ´ yq ` y „ pfpxq ´ fpyqq ` pfpyq ´ vq, so x „ fpxq ´ v,
contradicting either v ‰ u or v ą 0.

Comment. Lemma 2 also follows from fpx ` dq ´ fpxq P tfpdq,´fp´dqu as proven in Solution 2.
Indeed, we also have fp´xq ´ fp´x ´ dq P tfpdq,´fp´dqu, and then subtracting the second from the
first we get gpx`dq´gpxq P tgpdq,´gpdq, 0u. Replacing x`d and x with x and ´y gives the statement
of Lemma 2.

Comment. It is possible to prove using Lemma 2 that g must have image of the form t0, c, 2cu if it
has size greater than 2. Indeed, if gpxq “ c and gpyq “ d with 0 ă c ă d, then gpx ` yq “ d ´ c as it
must be nonnegative, and gpyq “ gppx ` yq ` p´xqq “ |d ´ 2c| provided that d ‰ 2c.

However, it is not possible to rule out t0, c, 2cu based entirely on the conclusion of Lemma 2; indeed,
the function given by

gpxq “

$

’

&

’

%

0, if x “ 2n for n P Z;
2, if x “ 2n ` 1 for n P Z;
1, if x R Z.

satisfies the conclusion of Lemma 2 (even though there is no function f giving this choice of g).

Note. Solution 1 actually implies that the result also holds over R. The proposal was originally
submitted and evaluated over Q as it is presented here, and the Problem Selection Committee believes
that this form is more suitable for the competition because it allows for more varied and interesting
approaches once Lemma 1 has been established. Even the variant here defined over Q was found to be
fairly challenging.
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A8. Let p ‰ q be coprime positive integers. Determine all infinite sequences a1, a2, . . . of
positive integers such that the following conditions hold for all n ě 1:

maxpan, an`1, . . . , an`pq ´ minpan, an`1, . . . , an`pq “ p and
maxpan, an`1, . . . , an`qq ´ minpan, an`1, . . . , an`qq “ q.

(Japan)

Answer: The only such sequences are an “ n ` C, where C is a nonnegative integer.

Common remarks.

• Denote by ari,js the subsequence ai, ai`1, . . . , aj.

• Without loss of generality, in each solution we suppose p ă q. It can be convenient to
treat the case where p “ 1 separately.

• The problem can also be posed for sequences of arbitrary integers (rather than positive).
Refer to the comment after Solution 1 for a proof.

Solution 1. Let k “ r
q
p
s. Note that k ě 2.

Lemma 1. If i, j and m are positive integers such that |i ´ j| ď mp then |ai ´ aj| ď mp.
Proof. By the given condition, if |i ´ j| ď p then |ai ´ aj| ď p. So the lemma follows from
induction on m and the triangle inequality. l

Lemma 2. For a fixed n, suppose that ai is minimal over i ě n. Then i ď n ` p ´ 1.
Proof. Suppose for contradiction that i ě n ` p. Then minpari´p,i`q´psq “ ai. Since q ´ p ď

pk ´ 1qp, it follows from Lemma 1 that maxpari´p,i`q´psq ď ai ` pk ´ 1qp ă ai ` q, which is a
contradiction. l

Lemma 3. For a fixed n ą q, suppose that ai is maximal over i ď n. Then i ě n ´ p ` 1.
Proof. Suppose aj is minimal over j ě n ´ q. Then by Lemma 2, j ď n ´ q ` p ´ 1. So
minparn´q,nsq “ aj and ai ě maxparn´q,nsq, which implies that ai ě aj ` q.

Lemma 2 also implies that if j ě n then aj ě minparn,n`psq. So if i ă j, then we have
aj ě ai ´ p, which contradicts ai ě aj ` q. Hence we must have i ą j.

The above inequality also gives |ai ´ aj| ě q ą pk ´ 1qp, so by Lemma 1 it follows that
|i ´ j| ą pk ´ 1qp. Therefore i ą j ` pk ´ 1qp ě n ´ q ` pk ´ 1qp ě n ´ p ` 1. l

Let bn be the minimal value of ai for i ě n. By Lemma 2, bn`p ą bn for all n. Hence
bn “ minparn,n`psq “ minparn,n`qsq. Let cn be the maximal value of ai for i ď n. By Lemma 3,
cn´p ą cn for all n ą q. Hence cn “ maxparn´p,nsq “ maxparn´q,nsq for n ą q.

So if n ą q then bn “ cn`p ´ p “ cn`q ´ q. So for n ą q we get bn`q´p ` p “ cn`q “ bn ` q,
and hence bn`q´p “ bn ` q ´ p.

Next note that bn`p ď an`p ď bn`p. So bn`p´bn ď p for all n ą q, and iterating this pq´pq

times gives bn`ppq´pq ´bn ď ppq´pq. But using bn`q´p “ bn`q´p gives bn`ppq´pq ´bn “ ppq´pq.
Since equality occurs, we must have bn`p “ bn ` p.

So for n ą q, bn`p “ bn ` p and bn`q´p “ bn ` q ´ p. Since p and q ´ p are coprime,
bn`1 “ bn ` 1 for all n ą q. The only way for bn and bn`1 to be different is if bn “ an, so we
deduce that an`1 “ an ` 1 and there is a constant C such that an “ n ` C for all n ą q.

Finally, suppose an “ n ` C for all n ě N . Then p “ maxpaN´1, N ` C ` p ´ 1q ´

minpaN´1, N ` Cq. So aN´1 “ N ` C ` p or N ` C ´ 1. Similarly, aN´1 “ N ` C ` q or
N ` C ´ 1. Hence aN´1 “ N ` C ´ 1. So, by induction, we have an “ n ` C for all positive
integers n. Since a1 ě 1, C is a nonnegative integer.

It is trivial to check that an “ n ` C satisfies the given condition.
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Comment. Here is a variant of Solution 1. Proceed up to proving bn ´ n is eventually periodic with
period q ´ p. Then there is some minimal value of bn ´n. Suppose n attains this minimal value. Since
bn`p ´ n ´ p ď bn ´ n, n ` p also attains this minimal value. And since p and q ´ p are coprime,
all n ě q must attain this minimal value. Hence bn`1 “ bn ` 1 for all n ě q. Finish as above.

Comment. It is also possible to solve the problem using a weaker version of Lemma 2 and without
Lemma 3. For example, the following lemma plays a similar role.
Lemma 2’. Let b1

n “ minparn,n`psq. Then b1
n ă b1

n`p.

Comment. To solve the problem for sequences an of arbitrary integers, we will use the following
lemma.
Lemma 4. The sequence an is either bounded above or bounded below.
Proof. Suppose that an is unbounded above and below. Then there is some i such that ai ă a1 ´ p.
There is also some j such that aj ą maxpar1,isq ` q. Now let al be minimal amongst ar1,js. Since
al ď ai, al ă a1 ´ p and al ă aj ´ kp. By Lemma 1, 1 ` p ă l ă j ´ kp. So minparl´p,l`q´psq “ al. By
Lemma 1 again, maxparl´p,l`q´psq ď al ` pk ´ 1qp ă al ` q, which is a contradiction. l

From there, the solution above can be adapted to prove that an “ n ` C for all n or an “ ´n ` C
for all n, where C can be any constant integer.

Solution 2. For n, x ě 1, let the x-width of n be maxparn,n`xsq ´ minparn,n`xsq. We call a
positive integer x good if the x-width of n is less than or equal to x for all sufficiently large n,
and we call x very good if the x-width of n is equal to x for sufficiently large n.
Lemma 1. If p1 is good and q1 is very good with p1 ă q1 ă 2p1, then 2p1 ´ q1 is also good.
Proof. Note that 0 ă q1 ´ p1 ă p1 ă q1. Let n be a sufficiently large positive integer. Then for
k P rn` q1 ´ p1, n` p1s, we have ak ě maxparn,n`p1sq ´ p1 and ak ě maxparn`q1´p1,n`q1sq ´ p1 since
p1 is good, which shows ak ě maxparn,n`q1sq ´ p1. Similarly we get ak ď minparn,n`q1sq ` p1.

Therefore, for all k P rn` q1 ´p1, n`p1s we have ak P rmaxparn,n`q1sq ´p1,minparn,n`q1sq `p1s.
Thus, the p2p1 ´ q1q-width of n` q1 ´ p1 is at most pminparn,n`q1sq ` p1q ´ pmaxparn,n`q1sq ´ p1q “

2p1 ´ q1. The lemma follows. l

Lemma 2. Let p1 be a good number and q1 a very good number with p1 ă q1. For sufficiently
large n, take s, t P rn, n ` q1s such that minparn,n`q1sq “ as and maxparn,n`q1sq “ at. Then
s P rn, n ` p1s and t P rn ` q1 ´ p1, n ` q1s.
Proof. Lemma 2 and Lemma 3 from Solution 1 hold with p and q replaced by p1 and q1 by
similar arguments. We can deduce the statement about s from Lemma 2 of Solution 1. We can
deduce the statement about t from Lemma 3 of Solution 1. l

Lemma 3. If p1 is good and q1 is very good with 2p1 ă q1, then there exists a positive integer r
such that for all sufficiently large n, we have an`r ´ an ě r.
Proof. Let r “ q1 ´ 2p1, and let s and t be as defined in Lemma 2. Then consider the identity

pat ´ an`q1´p1q ` pan`p1`r ´ an`p1q ` pan`p1 ´ asq “ at ´ as “ q1.

By Lemma 2, we have s P rn, n ` p1s and t P rn ` q1 ´ p1, n ` q1s, so an`p1 ´ s ď p1 and
at ´ an`q1´p1 ď p1. Combining these, we get an`p1`r ´ an`p1 ě q1 ´ 2p1 “ r. This proves that
an`r ´ an ě r for sufficiently large n. l

Lemma 4. Suppose pp, qq ‰ p1, 2q. Then there exists a good number p1 such that 2p1 ă q.
Proof. Let p1 be the smallest good positive integer. Note that p is good, so p1 exists and is less
than q.

Suppose for contradiction that 2p1 ě q. If 2p1 ą q, then by Lemma 1, 2p1 ´ q is a good
number strictly less than p1, which contradicts minimality of p1. If 2p1 “ q, then p1 ă p ă 2p1.
So we can apply Lemma 1 with q0 “ p to get that 2p1 ´ p is a good number that is strictly less
than p1, which again contradicts minimality. l
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If pp, qq “ p1, 2q then the problem is easily solved. Otherwise, Lemmas 3 and 4 combined
give us some r ą 0 such that an`r ´ an ě r for n sufficiently large.

By iterating, we get an`pr ´ an ě pr for all sufficiently large n, and hence it follows that
an`p ´ an “ p. Similarly we get an`q ´ an “ q. As p and q are coprime, we deduce that
an`1 ´ an “ 1 for sufficiently large n. Thus we get an “ n ` C for sufficiently large n, and we
can conclude by the same argument as Solution 1.
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Combinatorics

C1. Let n be a positive integer. A class of n students run n races, in each of which they
are ranked with no draws. A student is eligible for a rating pa, bq for positive integers a and b
if they come in the top b places in at least a of the races. Their final score is the maximum
possible value of a ´ b across all ratings for which they are eligible.

Find the maximum possible sum of all the scores of the n students.
(Australia)

Answer: The maximum possible sum is npn´1q

2
.

Solution 1. The answer can be achieved by the students finishing in the same order in every
race. To show that this is the maximum, we will apply a series of modifications to the results of
the races, each of which does not decrease the total score, such that after k such modifications
the first k positions are the same in every race. Say that a student is scored on the bth place
if their score is a ´ b because they came in the top b places in a of the races and b is minimal
with this property for that student.

Supposing that the first k ´ 1 positions are the same in every race, look at the students
scored on the kth place. If there are no such students, let ℓ ą k be minimal such that some
student S is scored on the ℓth place. Then, in every race where S appears in any place from
the kth through the ℓth inclusive (of which there must be at least ℓ, otherwise S would achieve
a higher rating of 0 based on the nth place), reorder the students in places k through ℓ so that
S finishes in the kth place instead (and otherwise the ordering of those students is arbitrary).
Now S is scored on the kth place, their score has gone up by ℓ ´ k and no other scores have
gone down (some might have gone up as well).

Now we know that the first k ´ 1 positions are the same in every race and at least one
student is scored on the kth place. Pick one such student S. In each race where S finishes
behind the kth place, swap them with the student T who finishes in the kth place, leaving the
positions of all other students unchanged. Each such swap increases the score of S by 1 and
decreases the score of T by at most 1, so such swaps do not decrease the total score. At the
end of this process, the first k positions are the same in every race and the total score has not
decreased.

Repeating this n times yields the required result.

Comment. The following simpler approach to modifying results of races is tempting: find pairs of
students S and T who are scored on places k and ℓ respectively, where k ă ℓ, but where S finishes
after T in some race, and swap the positions of those two students in that race so they finish in the
same order as the places they are scored on. However, such a swap can decrease the total score; for
example, suppose that k “ 1 and ℓ “ 4, and in some race S finishes 6th and T finishes 3rd; then
swapping those students reduces the number of races contributing to T ’s score without increasing the
number contributing to S’s score.

Solution 2. The answer can be achieved by having the same ranking for all n races.
Note that taking a “ b “ n shows each student has a nonnegative score. Consider a student

who has race ranks r1, r2, . . . , rn and a final score of s. We first prove that
ÿ

i

ri ď npn ´ sq.

Without loss of generality, suppose that r1 ď r2 ď ¨ ¨ ¨ ď rn. There must exist some k with
s` 1 ď k ď n and k ´ rk “ s. In order to maximise

ř

i ri while retaining the score of s, we can
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replace each of r1, . . . , rk´1 by rk, and replace each of rk`1, . . . , rn by n. Then the sum is
ÿ

i

ri ď krk ` pn ´ kqn “ n2
´ kpn ´ rkq “ n2

´ kpn ` s ´ kq ď n2
´ sn. (1)

The final inequality follows from the fact that given s ` 1 ď k ď n, the quantity kpn ` s ´ kq

is minimised when k “ n.
The sum of ranks of all students across all races is n2pn`1q

2
. If the total of all student scores

is t, then (1) implies
n2pn ` 1q

2
ď n3

´ tn.

This rearranges to t ď
npn´1q

2
, as required.

Solution 3. In each race, assign the student in the kth place a weight of 1 ´ k
n
. If a student

finishes in the top b places in at least a of the races, the total of their weights is at least
a

`

1 ´ b
n

˘

“ a ´ b
`

a
n

˘

ě a ´ b. Thus the sum of a student’s weights across all races is at least
their score, and so the sum of all weights for all students across all races is at least the sum of
all the scores of all students. The sum of weights in each race is n´1

2
, so the sum of all weights

across all races is npn´1q

2
. Equality is achieved if and only if, for each student, the values of b

and a determining that student’s score have a “ n and they finish in exactly the bth place in
all n races; that is, if the students are ranked the same in every race.

Solution 4. Given a positive integer bpSq for each student S, define abpSq to be the number
of races in which S finished in the top bpSq places, and define scorebpSq “ abpSq ´ bpSq; for a
race r, let IbpS, rq be 1 if S finished in the top bpSq places in race r and 0 otherwise, so

abpSq “
ÿ

r

IbpS, rq.

Then the problem asks for the maximum across all possible results of the races of

max
b

ÿ

S

scorebpSq “ max
b

˜

ÿ

r

ÿ

S

IbpS, rq ´
ÿ

S

bpSq

¸

.

Given b, the sum
ř

S IbpS, rq is maximised (not necessarily uniquely) for some choice of the
rankings in race r, which is the same choice for every race. So the maximum possible sum of
the scores of all the students occurs when all students are ranked the same in all races, which
yields the given answer.
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C2. Let n be a positive integer. The integers 1, 2, 3, . . . , n2 are to be written in the cells
of an n ˆ n board such that each integer is written in exactly one cell and each cell contains
exactly one integer. For every integer d with d | n, the d-division of the board is the division
of the board into pn{dq2 nonoverlapping sub-boards, each of size d ˆ d, such that each cell is
contained in exactly one d ˆ d sub-board.

We say that n is a cool number if the integers can be written on the nˆ n board such that,
for each integer d with d | n and 1 ă d ă n, in the d-division of the board, the sum of the
integers written in each d ˆ d sub-board is not a multiple of d.

Determine all even cool numbers.
(Türkiye)

Answer: The even cool numbers are n “ 2k where k is a positive integer.

Solution. We first show by induction that n “ 2k is a cool number. The base case of n “ 2 is
trivial as there is no such d.

For induction, assume that 2k is a cool number. We construct a numbering of a 2k`1 ˆ 2k`1

board that satisfies the conditions.
Take the 2k`1 ˆ2k`1 board and divide it into four 2k ˆ2k sub-boards. By assumption, there

is some numbering P of a 2k ˆ2k board that satisfies the required condition; we write down the
numbering P in each sub-board. Next, add 22k to every number in the second sub-board, add
2 ˆ 22k to every number in the third sub-board, and add 3 ˆ 22k to every number in the fourth
sub-board. Then the numbers in the cells of the 2k`1 ˆ2k`1 board are the numbers 1 to 22pk`1q.

Now locate 22k from the first sub-board, and swap it with 22k ` 2k´1 from the second sub-
board. Locate 3ˆ22k from the third sub-board, and swap it with 3ˆ22k `2k´1 from the fourth
sub-board.

We claim that this numbering of the 2k`1 ˆ2k`1 board satisfies the required conditions. For
any d “ 2i where i ă k, consider any 2i ˆ 2i sub-board. The sum of its cells modulo 2i is not
changed in the addition step or the swapping step, so the sum is congruent modulo 2i to the
sum of the corresponding 2i ˆ 2i sub-board in P , which is nonzero, as required.

In the case of d “ 2k, we can directly evaluate the sum of the pb ` 1qth sub-board for
b P t0, 1, 2, 3u. The sum is given by

22k´1
p1 ` 22kq ` b24k ` p´1q

b2k´1
” 2k´1

pmod 2kq.

Therefore all sub-boards satisfy the required conditions and so 2k`1 is a cool number, completing
the induction.

It remains to show that no other even number is a cool number. Let n “ 2sm where s is a
positive integer and m is an odd integer greater than 1. For the sake of contradiction, suppose
that there is a numbering of the n ˆ n board satisfying the required conditions.

Claim. In the 2i-division of the board, where 1 ď i ď s, the sum of numbers in each 2i ˆ 2i

sub-board is congruent to 2i´1 modulo 2i.

Proof. We prove the claim by induction on i. The base case of i “ 1 holds as the sum of
numbers in each 2 ˆ 2 sub-board must be odd. Next, suppose the claim is true for 2i. In the
2i`1-division, each 2i`1 ˆ 2i`1 sub-board is made up of four 2i ˆ 2i sub-boards, each with a sum
congruent to 2i´1 modulo 2i. Hence the sum of each 2i`1 ˆ 2i`1 sub-board is a multiple of 2i.
It cannot be a multiple of 2i`1 because of the conditions, which means it must be congruent to
2i modulo 2i`1. This proves the claim. l
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Back to the problem, since m is odd, summing up the m2 sums of 2s ˆ 2s sub-boards gives

2s´1m2
” 2s´1

pmod 2sq.

However, the sum of the numbers from 1 to n2 is

n2pn2 ` 1q

2
“ 22s´1m2

p22sm2
` 1q ” 0 pmod 2sq.

This is a contradiction. Therefore n is not a cool number.

Comment. In the case of odd n, similar arguments show that prime powers are cool numbers.
If the definition of cool numbers additionally requires that all d ˆ d sub-boards in the d-division

have the same nonzero residue modulo d, then the cool numbers are precisely the prime powers.
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C3. Let n be a positive integer. There are 2n knights sitting at a round table. They
consist of n pairs of partners, each pair of which wishes to shake hands. A pair can shake hands
only when next to each other. Every minute, one pair of adjacent knights swaps places.

Find the minimum number of exchanges of adjacent knights such that, regardless of the
initial arrangement, every knight can meet her partner and shake hands at some time.

(Belarus)

Answer: The minimum number of exchanges is npn´1q

2
.

Common remarks. The solution is divided into three lemmas. We provide multiple proofs
of each lemma.

Solution. Join each pair of knights with a chord across the table. We’ll refer to these chords
as chains.

First we show that npn ´ 1q{2 exchanges are required for some arrangements.

Lemma 1. If each knight is initially sitting directly opposite her partner, then at least npn´1q{2
exchanges are required for all knights to meet and shake hands with their partners.

Proof 1. In this arrangement any two chains are initially intersecting. For two knights to be
adjacent to each other, it is necessary that their chain does not cross any other chain, and thus
every pair of chains must be uncrossed at some time. Each exchange of adjacent knights can
only uncross a single pair of intersecting chains, and thus the number of exchanges required is
at least the number of pairs of chains, which is npn ´ 1q{2. l

Proof 2. In this arrangement the two knights in each pair are initially separated by n´ 1 seats
in either direction around the table, and so each pair must move a total of at least n ´ 1 steps
so as to be adjacent. There are n pairs, and each exchange moves two knights by a single step.
Hence at least npn ´ 1q{2 moves are required. l

We will now prove that npn´1q{2 exchanges is sufficient in all cases. We’ll prove a stronger
version of this bound than is required, namely that every knight can shake hands with her
partner at the end, after all exchanges have finished.

Begin by adding a pillar at the centre of the table. For each chain that passes through the
centre of the table, we arbitrarily choose one side of the chain and say that the pillar lies on
that side of the chain. While the pillar may lie on a chain, we will never move a knight if that
causes the pillar to cross to the other side of a chain. Say that a chain passes in front of a
knight if it passes between that knight and the pillar, and define the length of a chain to be
the number of knights it passes in front of. Then each chain has a length between 0 and n ´ 1
inclusive.

Say that a chain C encloses another chain C 1 if C and C 1 do not cross, and C passes between
C 1 and the pillar. Say that two chains are intersecting if they cross on the table; enclosing if
one chain encloses the other; and disjoint otherwise. Let k, l and m denote respectively the
number of enclosing, intersecting and disjoint pairs of chains. Then we have

k ` l ` m “
npn ´ 1q

2
.
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Lemma 2. 2k ` l exchanges are sufficient to reach a position with all pairs of knights sitting
adjacent to each other.
Proof 1. We proceed by induction on 2k ` l.

If every chain has length 0, then every pair of knights is adjacent and the statement is
trivial.

Otherwise, let A and B be a pair of knights whose chain C0 has length q ě 1. Let S0 “ A,
and let S1, . . . , Sq be the knights which C0 passes in front of, sitting in that order from A to B.
We know that C0 passes in front of S1, and there are three cases for the chain C1 for knight S1.

If C1 passes in front of S0 then C0 and C1 are intersecting, and we can make them disjoint
by exchanging the positions of S0 and S1. This reduces the sum 2k ` l by 1.

If C1 passes in front of neither S0 nor B then C1 is enclosed by C0, and we can swap S0

and S1 to make C0 and C1 an intersecting pair. This increases l by 1 and decreases k
by 1, and hence reduces the sum 2k ` l by 1.

If this C1 passes in front of B then we cannot immediately find a beneficial exchange.

In the third case, we look instead at the knights Si and Si`1, for each i in turn. Each time,
we will either find a beneficial exchange, or find that the chain Ci`1 for knight Si`1 passes in
front of B. Eventually we will either find a beneficial exchange in one of the first two cases
above, or we will find that the chain Cq for Sq passes in front of B, in which case Cq and C0

are intersecting and we can make Cq and C0 disjoint by swapping Sq and B.
Also note that the only times a chain is increased in length is when it is enclosed by another

chain. But this cannot happen for a chain containing the pillar, so no chains ever cross the
pillar. l

Proof 2. We begin by ignoring the seats, and let each knight walk freely to a predetermined
destination. Each pair of knights will walk around the table to one of the two points on the
circumference midway between their initial locations, such that the chain between them passes
between the pillar and the destination. If more than one pair of knights would have the same
destination point, then we make small adjustments to the destination points so that each pair
has a distinct destination point.

We then imagine each knight walking at a constant speed (which may be different for each
knight). They all start and stop walking at the same time. We want to count how many times
two knights pass (either in opposite directions, or in the same direction but at different speeds).
For any two pairs of knights, the number of passes depends on the relation between their two
chains.

If their two chains are intersecting then there will be one pass, involving the two knights
for whom the other chain passes between them and the pillar.

If their two chains are enclosing then there will be two passes, with one of the knights
with the enclosing chain passing both of the knights with the shorter enclosed chain.

If their two chains are disjoint then there will be no passes.

The number of passes is therefore 2k` l. If multiple pairs of knights would pass at the same
time, we can slightly adjust the walking speeds so that the passes happen at distinct times.
We can then convert this sequence of passes into a sequence of seat exchanges in the original
problem, which shows that 2k ` l exchanges is sufficient. l
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Lemma 3. k ď m.
Proof 1. We proceed by induction on n. The base case n “ 2 is clear.

Consider a chain C of greatest length, and suppose it joins knights A and B. Let x be the
number of chains that intersect C, and let y be the number of chains that are enclosed by C.
Note that no chain can enclose C. Then C passes in front of one knight from each pair whose
chain intersects C, and both knights in any pair whose chain is enclosed by C. Thus the length
of C is x ` 2y ď n ´ 1. The number of chains that form a disjoint pair with C is then

n ´ 1 ´ x ´ y ě px ` 2yq ´ x ´ y “ y.

Now we can remove A and B and use the induction hypothesis. We need to show that the
length of each remaining chain is at most n ´ 2 so the chains remain valid. No chain increases
in length after removing A and B. If any chain C had length n ´ 1, then the chain between A
and B also had length n ´ 1. Then C must have passed in front of exactly one of A or B, and
so has length n ´ 2 after removing A and B. l

Proof 2. Let kC denote the number of chains C 1 such that C encloses C 1.
Note that if C encloses C 1, then kC1 ă kC .
First we will show that there at least kC chains that are disjoint from C. Let x be the length

of C, let S be the set of x knights that C passes in front of, and let T be the set of x knights
sitting directly opposite them. None of the knights in T can have a chain that encloses or is
enclosed by C, and if any knight in T has a chain that intersects C, then her partner must be
a knight in S. So we have that

2kC “ number of knights in S whose chain is enclosed by C

“ x ´ number of knights in S whose chain intersects C

ď x ´ number of knights in T whose chain intersects C

ď number of knights in T whose chain is disjoint from C

ď 2 ˆ number of chains that are disjoint from C.

Now let mC denote the number of chains C 1 with C and C 1 disjoint, and kC1 ă kC . We will
show that mC ě kC .

Let R be a set of kC chains that are disjoint from C, such that
ř

C1PR kC1 is minimal. If
every chain C 1 P R has kC1 ă kC , then we are done. Otherwise, let consider a chain C 1 with
kC1 ě kC . There are then at least kC chains C2 for which the chain C 1 passes between C2 and
the pillar. Each of these chains must have kC2 ă kC1 , and at least one of them is not in R
(otherwise R would contain C 1 and at least kC other chains), so we can swap this chain with C 1

to obtain a set R1 with
ř

C1PR1 kC1 ă
ř

C1PR kC1 . But this contradicts the minimality of R.
We finish by summing these inequalities over all chains C:

k “
ÿ

C

kC ď
ÿ

C

mC ď m. l

By Lemma 3, we have that 2k` l ď k` l`m “ npn´1q{2. Combining this with Lemma 2,
we have that npn ´ 1q{2 exchanges is enough to reach an arrangement where every knight is
sitting next to her partner, as desired.

Comment. Either proof of Lemma 3 can be adapted to show that the configuration in Lemma 1 is
the only one which achieves the bound.
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C4. On a board with 2024 rows and 2023 columns, Turbo the snail tries to move from
the first row to the last row. On each attempt, he chooses to start on any cell in the first row,
then moves one step at a time to an adjacent cell sharing a common side. He wins if he reaches
any cell in the last row. However, there are 2022 predetermined, hidden monsters in 2022 of
the cells, one in each row except the first and last rows, such that no two monsters share the
same column. If Turbo unfortunately reaches a cell with a monster, his attempt ends and he
is transported back to the first row to start a new attempt. The monsters do not move.

Suppose Turbo is allowed to take n attempts. Determine the minimum value of n for which
he has a strategy that guarantees reaching the last row, regardless of the locations of the
monsters.

(Hong Kong)

Comment. One of the main difficulties of solving this question is in determining the correct expression
for n. Students may spend a long time attempting to prove bounds for the wrong value for n before
finding better strategies.

Students may incorrectly assume that Turbo is not allowed to backtrack to squares he has already
visited within a single attempt. Fortunately, making this assumption does not change the answer to
the problem, though it may make it slightly harder to find a winning strategy.

Answer: The answer is n “ 3.

Solution. First we demonstrate that there is no winning strategy if Turbo has 2 attempts.
Suppose that p2, iq is the first cell in the second row that Turbo reaches on his first attempt.

There can be a monster in this cell, in which case Turbo must return to the first row immediately,
and he cannot have reached any other cells past the first row.

Next, suppose that p3, jq is the first cell in the third row that Turbo reaches on his second
attempt. Turbo must have moved to this cell from p2, jq, so we know j ‰ i. So it is possible that
there is a monster on p3, jq, in which case Turbo also fails on his second attempt. Therefore
Turbo cannot guarantee to reach the last row in 2 attempts.

Next, we exhibit a strategy for n “ 3. On the first attempt, Turbo travels along the path

p1, 1q Ñ p2, 1q Ñ p2, 2q Ñ ¨ ¨ ¨ Ñ p2, 2023q.

This path meets every cell in the second row, so Turbo will find the monster in row 2 and his
attempt will end.

If the monster in the second row is not on the edge of the board (that is, it is in cell p2, iq
with 2 ď i ď 2022), then Turbo takes the following two paths in his second and third attempts:

p1, i ´ 1q Ñ p2, i ´ 1q Ñ p3, i ´ 1q Ñ p3, iq Ñ p4, iq Ñ ¨ ¨ ¨ Ñ p2024, iq.

p1, i ` 1q Ñ p2, i ` 1q Ñ p3, i ` 1q Ñ p3, iq Ñ p4, iq Ñ ¨ ¨ ¨ Ñ p2024, iq.

The only cells that may contain monsters in either of these paths are p3, i ´ 1q and p3, i ` 1q.
At most one of these can contain a monster, so at least one of the two paths will be successful.
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Figure 1: Turbo’s first attempt, and his second and third attempts in the case where the
monster on the second row is not on the edge. The cross indicates the location of a monster,
and the shaded cells are cells guaranteed to not contain a monster.

If the monster in the second row is on the edge of the board, without loss of generality we
may assume it is in p2, 1q. Then, on the second attempt, Turbo takes the following path:

p1, 2q Ñ p2, 2q Ñ p2, 3q Ñ p3, 3q Ñ ¨ ¨ ¨ Ñ p2022, 2023q Ñ p2023, 2023q Ñ p2024, 2023q.

Figure 2: Turbo’s second and third attempts in the case where the monster on the second row
is on the edge. The light gray cells on the right diagram indicate cells that were visited on the
previous attempt. Note that not all safe cells have been shaded.

If there are no monsters on this path, then Turbo wins. Otherwise, let pi, jq be the first cell
on which Turbo encounters a monster. We have that j “ i or j “ i ` 1. Then, on the third
attempt, Turbo takes the following path:

p1, 2q Ñ p2, 2q Ñ p2, 3q Ñ p3, 3q Ñ ¨ ¨ ¨ Ñ pi ´ 2, i ´ 1q Ñ pi ´ 1, i ´ 1q

Ñ pi, i ´ 1q Ñ pi, i ´ 2q Ñ ¨ ¨ ¨ Ñ pi, 2q Ñ pi, 1q

Ñ pi ` 1, 1q Ñ ¨ ¨ ¨ Ñ p2023, 1q Ñ p2024, 1q.
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Now note that

• The cells from p1, 2q to pi ´ 1, i ´ 1q do not contain monsters because they were reached
earlier than pi, jq on the previous attempt.

• The cells pi, kq for 1 ď k ď i ´ 1 do not contain monsters because there is only one
monster in row i, and it lies in pi, iq or pi, i ` 1q.

• The cells pk, 1q for i ď k ď 2024 do not contain monsters because there is at most one
monster in column 1, and it lies in p2, 1q.

Therefore Turbo will win on the third attempt.

Comment. A small variation on Turbo’s strategy when the monster on the second row is on the edge
is possible. On the second attempt, Turbo can instead take the path

p1, 2023q Ñ p2, 2023q Ñ p2, 2022q Ñ ¨ ¨ ¨ Ñ p2, 3q Ñ p2, 2q Ñ p2, 3q Ñ ¨ ¨ ¨ Ñ p2, 2023q

Ñ p3, 2023q Ñ p3, 2022q Ñ ¨ ¨ ¨ Ñ p3, 4q Ñ p3, 3q Ñ p3, 4q Ñ ¨ ¨ ¨ Ñ p3, 2023q

Ñ ¨ ¨ ¨

Ñ p2022, 2023q Ñ p2022, 2022q Ñ p2022, 2023q

Ñ p2023, 2023q

Ñ p2024, 2023q.

If there is a monster on this path, say in cell pi, jq, then on the third attempt Turbo can travel straight
down to the cell just left of the monster instead of following the path traced out in the second attempt.

p1, j ´ 1q Ñ p2, j ´ 1q Ñ ¨ ¨ ¨ Ñ pi ´ 1, j ´ 1q Ñ pi, j ´ 1q

Ñ pi, j ´ 2q Ñ ¨ ¨ ¨ Ñ pi, 2q Ñ pi, 1q

Ñ pi ` 1, 1q Ñ ¨ ¨ ¨ Ñ p2023, 1q Ñ p2024, 1q.

Figure 3: Alternative strategy for Turbo’s second and third attempts.
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C5. Let N be a positive integer. Geoff and Ceri play a game in which they start by writing
the numbers 1, 2, . . . , N on a board. They then take turns to make a move, starting with
Geoff. Each move consists of choosing a pair of integers pk, nq, where k ě 0 and n is one of the
integers on the board, and then erasing every integer s on the board such that 2k | n ´ s. The
game continues until the board is empty. The player who erases the last integer on the board
loses.

Determine all values of N for which Geoff can ensure that he wins, no matter how Ceri
plays.

(Indonesia)

Answer: The answer is that Geoff wins when N is of the form 2n for n odd or of the form t2n

for n even and t ą 1 odd.

Common remarks. We will say that a set S wins if the current player wins given S as the
current set of integers on the board. Otherwise, we will say that S loses.

We will let JpS, T q “ p2S´1qYp2T q. Note that every subset of Z can be written as JpS, T q

for some unique pair pS, T q of subsets of Z.
We will let rns denote the set t1, 2, . . . , nu.

Solution.
Lemma 1. For any set S, S wins if and only if JpS,Hq wins. Similarly, S wins if and only if
JpH,Sq wins.
Proof. Let pk,mq be a move on S, and let T be the result of applying the move. Then we can
reduce JpS,Hq to JpT ,Hq by applying the move pk ` 1, 2m ´ 1q.

Conversely, let pk,mq be a move on JpS,Hq. We can express the result of this move as
JpT ,Hq for some T . Then we can reduce S to T by applying the move pmaxpk´1, 0q, pk`1q{2q.

This gives us a natural bijection between games starting with S and games starting with
JpS,Hq and thus proves the first part of the lemma. The second part follows by a similar
argument. l

Lemma 2. If S and T are nonempty and at least one of them loses, then JpS, T q wins.
Proof. If S is losing, then we can delete JpH, T q using the move p1, tq for some t P JpH, T q,
which leaves the losing set JpS,Hq. Similarly, if T is losing, then we can delete JpS,Hq using
the move p1, sq for some s P JpS,Hq, leaving the losing set JpH, T q. l

Lemma 3. If S is nonempty and wins, then JpS,Sq loses.
Proof. From this position, we can convert any sequence of moves into another valid sequence of
moves by replacing pk, 2n´1q with pk, 2nq, and vice versa. Thus we may assume that the initial
move pk,mq has m odd. We want to show that any such move results in a winning position for
the other player.

The move p0,mq loses immediately. Otherwise, the move results in the set JpT ,Sq for some
set T . There are three cases.

If T is empty then the other player gets the winning set JpH,Sq.

If T is losing then the other player can choose the move p1, sq for some s P JpH,Sq, which
leaves the losing set JpT ,Hq.

If T is nonempty winning then the other player can choose the move pk,m ` 1q, which
results in the position JpT , T q. We can then proceed by induction on |S| to show that
this is a losing set. l
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Lemma 4. r2ns wins if and only if rns loses.

Proof. Note that r2ns “ Jprns, rnsq. The result then follows directly from the previous two
lemmas. l

Lemma 5. For any integer n ě 1, r2n ` 1s wins.

Proof. By Lemma 4, either rns or r2ns loses. If rns loses, then by Lemma 2 we have that
r2n ` 1s “ Jprn ` 1s, rnsq wins. Otherwise, r2ns loses, and therefore r2n ` 1s wins by choosing
the move pk, 2n ` 1q for sufficiently large k so that only 2n ` 1 is eliminated. l

It remains to verify the original answer. We have two cases to consider:

• Suppose N “ 2n for some n. For N “ 1, every move is an instant loss for Geoff. Then
by Lemma 4, Geoff wins for N “ 2n if and only if Geoff loses for N “ 2n´1, and thus by
induction we have that Geoff wins for N “ 2n if and only if n is odd.

• Otherwise, N “ t2n, for some n and some t ą 1 with t odd. By Lemma 5, Geoff wins
when n “ 0. Then by Lemma 4, Geoff wins for N “ t2n if and only if Geoff loses for
N “ t2n´1, and thus by induction on n we have that Geoff wins for N “ t2n if and only
if n is even.

Comment. We can represent this game as a game on partial binary trees. This representation could
be common in rough working, as it facilitates exploration of small cases. If two sets produce trees
which are topologically equivalent, then this equivalence leads to a natural bijection between games
starting with the two sets. Such equivalences lead to a significant reduction in the number of distinct
cases that need to be considered when exploring the game for small N .

The construction is as follows. First we begin by considering an infinite binary tree. For each
positive integer n, we consider the binary representation of n ´ 1, starting with the least significant
bit and ending with an infinite sequence of leading zeroes. We map this sequence of bits to a path
on the binary tree by starting at the root, and then repeatedly choosing the left child if the bit is 0
and the right child if the bit is 1. We can then truncate each path after reaching a sufficient depth to
distinguish the path from all other paths in the tree.

‚

‚ ‚

‚ ‚‚ ‚

‚ ‚‚ ‚‚ ‚‚ ‚
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1 2

3 45 67 8

9 10

0 1

0 1 0 1

0 1 0 10 1 0 1

0 1 0 1

Valid moves in this representation of the game consist of selecting a node with two children, and
removing either the left child or the right child (and its descendants). Selecting and removing the
entire graph is also an allowed move (which loses instantly).

Two trees have equivalent games if they’re topologically identical. This equivalence includes swap-
ping the left and right children of any single node, or removing a node with a single child by merging
the edges above and below it (and decreasing the depth of its children by one).
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Comment. We can also analyse this game using Grundy values (also known as nim-values or nimbers).
This requires a slight modification to the rules, wherein any move that would erase all integers on the
board is disallowed, and the first player who cannot move loses. This is clearly equivalent to the
original game.

Let gpSq denote the Grundy value of the game starting with the set S. Note that the bijection in
Lemma 1 shows that

gpSq “ gpJpS,Hqq “ gpJpH,Sqq.

For any set V , let mexpV q denote the least nonnegative element that is not an element of V . For
nonnegative integers x and y, define jpx, yq recursively as

jpx, yq “ mexptx, yu Y tjpw, yq | w ă xu Y tjpx, zq | z ă yuq.

The values of jpx, yq for small x and y are:

5 6 7 8 9 1 0
4 5 3 6 2 0 1
3 4 5 1 0 2 9
2 3 4 0 1 6 8
1 2 0 4 5 3 7
0 1 2 3 4 5 6
— 0 1 2 3 4 5

We can show that gpJpS, T qq “ jpgpSq, gpT qq for any nonempty sets S and T . The remainder of
the proof follows a similar structure to the given solution.
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C6. Let n and T be positive integers. James has 4n marbles with weights 1, 2, . . . , 4n.
He places them on a balance scale, so that both sides have equal weight. Andrew may move a
marble from one side of the scale to the other, so that the absolute difference in weights of the
two sides remains at most T .

Find, in terms of n, the minimum positive integer T such that Andrew may make a sequence
of moves such that each marble ends up on the opposite side of the scale, regardless of how
James initially placed the marbles.

(Ghana)

Answer: The minimum value of T is 4n.

Solution 1. We must have T ě 4n, as otherwise we can never move the marble of weight 4n.
We will show that T “ 4n by showing that, for any initial configuration, there is a sequence
of moves, never increasing the absolute value of the difference above 4n, that results in every
marble ending up on the opposite side of the scale. Because moves are reversible, it suffices to
do the following: exhibit at least one configuration C for which this can be achieved, and show
that any initial configuration can reach such a configuration C by some sequence of moves.

Consider partitioning the weights into pairs pt, 4n ` 1 ´ tq. Suppose that each side of the
balance contains n of those pairs. If one side of the balance contains the pair pt, 4n ` 1 ´ tq
for 1 ď t ă 2n and the other side contains p2n, 2n ` 1q, then the following sequence of moves
swaps those pairs between the sides without ever increasing the absolute value of the difference
above 4n.

t, 4n ` 1 ´ t | 2n, 2n ` 1 (1)
t, 2n, 4n ` 1 ´ t | 2n ` 1 (2)

t, 2n | 2n ` 1, 4n ` 1 ´ t (3)
t, 2n, 2n ` 1 | 4n ` 1 ´ t (4)
2n, 2n ` 1 | t, 4n ` 1 ´ t (5)

Applying this sequence twice swaps any two pairs pt, 4n ` 1 ´ tq and pt1, 4n ` 1 ´ t1q between
the sides. So we can achieve an arbitrary exchange of pairs between the sides, and C can be
any configuration where each side of the balance contains n of those pairs.

We now show that any initial configuration can reach one where each side has n of those
pairs. Consider a configuration where one side has total weight A ´ s and the other has total
weight A ` s, for some 0 ď s ď 2n, and where some pair is split between the two sides. (If
no pair is split between the two sides, they must have equal weights and we are done.) Valid
moves include moving any weight w with 1 ď w ď 2n` s from the A` s side to the A´ s side,
and moving any weight w with 1 ď w ď 2n ´ s from the A ´ s side to the A ` s side. Suppose
the pair pt, 4n ` 1 ´ tq, with t ď 2n, is split between the sides. If t is on the A ` s side, or
on the A ´ s side and t ď 2n ´ s, it can be moved to the other side. Otherwise, t is on the
A ´ s side and t ě 2n ´ s ` 1, so 4n ` 1 ´ t ď 2n ` s is on the A ` s side and can be moved
to the other side. So we can unite the two weights from that pair without splitting any other
pair, and repeating this we reach a configuration where no pair is split between the sides.

Solution 2. As in Solution 1, T ě 4n. Let δ be the weight of the left side minus the weight
of the right side. A configuration is called legal if |δ| ď 4n, and a move is legal if it results in
a legal configuration. We will show that if δ “ 0 then there is a sequence of legal moves after
which every marble is on the opposite side.

We treat the n “ 1 case separately. The initial configuration has marbles 1, 4 on one side
and 2, 3 on the other. So moving marbles 2, 4, 3, 1 in that order is legal and every marble ends
on the opposite side. Now assume n ě 2.
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Marbles of weight at most 2n are called small. We will make use of the following lemmas:
Lemma 1. If a pair of legal configurations differ only in the locations of small marbles then
there is a sequence of legal moves to get from one to the other.
Proof. At first we only move marbles in the wrong position if they are not on the lighter side.
(In the case of a tie, neither side is lighter.) Such a move is always legal. Since this reduces the
number of marbles in the wrong position, eventually it will no longer be possible to perform
such a move.

Then the only marbles in the wrong position are on the lighter side. So moving one marble
in the wrong position at a time will always increase |δ|, and |δ| ď 4n at the end. Hence every
move is legal. l

Lemma 2. Let k P N. A positive integer can be expressed as a sum of distinct positive integers
up to k if and only if it is at most kpk ` 1q{2.
Proof. The maximum possible sum of distinct positive integers up to k is kpk ` 1q{2. For the
other direction we use induction on k. The case k “ 1 is trivial. Assume the statement is
true for k ´ 1. For positive integers up to k we only need a single term. For larger integers,
including k in the expression means we are done by the inductive hypothesis. l

Also note that np2n ` 1q ě 4n for n ě 2.
Let 2n ă m ď 4n. Marbles of weight greater than m are called big and marbles from 2n` 1

to m are called medium.
Suppose all big marbles are on the correct side (that is, opposite where they started), m is

on the incorrect side and the configuration is legal. Then the following steps give a sequence
of legal moves after which m is on the correct side and the big marbles were never moved.

Assume m is on the left. In Step 2, we rearrange the small marbles so we can move m. But
this is only possible if the weight of big and medium marbles on the right is not too large. So
we may need to move some medium marbles from the right first, which we do in Step 1.

Step 1 Skip to Step 2 if the total weight of medium and big marbles on the right side is at
most np4n ` 1q ` 2n ´ m. Since the big marbles are in the correct position and m is in
the incorrect position, the big marbles on the right can weigh at most np4n ` 1q ´ m. So
there must be a medium marble m1 ă m on the right.

From the first assumption, it is legal to move all small marbles to the left. Then by
Lemma 2 we can move some of the small marbles to the right so the right side has weight
exactly np4n`1q `2n. Then moving m1 is legal. Repeat this step. Since the total weight
of medium marbles on the right decreases, this step will occur a bounded number of times.

Step 2 Let the total weight of the right side be np4n`1q `2n´m`x and the weight of small
marbles on the right side be y. Note that y ě x. If x ď 0 then moving m is legal.

Otherwise, by Lemma 2 there is a set of small marbles of weight y ´ x. By Lemma 1,
there is a sequence of legal moves of small marbles such that the right side has weight
exactly np4n ` 1q ` 2n ´ m. Now moving m is legal.

Applying the process above for m “ 4n, 4n ´ 1, . . . , 2n ` 1 will move all nonsmall marbles
to the opposite side. Then Lemma 1 completes the proof.
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C7. Let N be a positive integer and let a1, a2, . . . be an infinite sequence of positive
integers. Suppose that, for each n ą N , an is equal to the number of times an´1 appears in the
list a1, a2, . . . , an´1.

Prove that at least one of the sequences a1, a3, a5, . . . and a2, a4, a6, . . . is eventually
periodic.

(Australia)

Solution 1. Let M ą maxpa1, . . . , aNq. We first prove that some integer appears infinitely
many times. If not, then the sequence contains arbitrarily large integers. The first time each
integer larger than M appears, it is followed by a 1. So 1 appears infinitely many times, which
is a contradiction.

Now we prove that every integer x ě M appears at most M ´ 1 times. If not, consider the
first time that any x ě M appears for the M th time. Up to this point, each appearance of x is
preceded by an integer which has appeared x ě M times. So there must have been at least M
numbers that have already appeared at least M times before x does, which is a contradiction.

Thus there are only finitely many numbers that appear infinitely many times. Let the largest
of these be k. Since k appears infinitely many times there must be infinitely many integers
greater than M which appear at least k times in the sequence, so each integer 1, 2, . . . , k ´ 1
also appears infinitely many times. Since k ` 1 doesn’t appear infinitely often there must only
be finitely many numbers which appear more than k times. Let the largest such number be
l ě k. From here on we call an integer x big if x ą l, medium if l ě x ą k and small if x ď k.
To summarise, each small number appears infinitely many times in the sequence, while each
big number appears at most k times in the sequence.

Choose a large enough N 1 ą N such that aN 1 is small, and in a1, . . . , aN 1 :

• every medium number has already made all of its appearances;

• every small number has made more than maxpk,Nq appearances.

Since every small number has appeared more than k times, past this point each small number
must be followed by a big number. Also, by definition each big number appears at most k
times, so it must be followed by a small number. Hence the sequence alternates between big
and small numbers after aN 1 .
Lemma 1. Let g be a big number that appears after aN 1 . If g is followed by the small number h,
then h equals the amount of small numbers which have appeared at least g times before that
point.
Proof. By the definition of N 1, the small number immediately preceding g has appeared more
than maxpk,Nq times, so g ą maxpk,Nq. And since g ą N , the gth appearance of every small
number must occur after aN and hence is followed by g. Since there are k small numbers and
g appears at most k times, g must appear exactly k times, always following a small number
after aN . Hence on the hth appearance of g, exactly h small numbers have appeared at least g
times before that point. l

Denote by ari,js the subsequence ai, ai`1, . . . , aj.
Lemma 2. Suppose that i and j satisfy the following conditions:

(a) j ą i ą N 1 ` 2,

(b) ai is small and ai “ aj,

(c) no small value appears more than once in ari,j´1s.

Then ai´2 is equal to some small number in ari,j´1s.
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Proof. Let I be the set of small numbers that appear at least ai´1 times in ar1,i´1s. By Lemma 1,
ai “ |I|. Similarly, let J be the set of small numbers that appear at least aj´1 times in ar1,j´1s.
Then by Lemma 1, aj “ |J | and hence by (b), |I| “ |J |. Also by definition, ai´2 P I and
aj´2 P J .

Suppose the small number aj´2 is not in I. This means aj´2 has appeared less than ai´1

times in ar1,i´1s. By (c), aj´2 has appeared at most ai´1 times in ar1,j´1s, hence aj´1 ď ai´1.
Combining with ar1,i´1s Ă ar1,j´1s, this implies I Ď J . But since aj´2 P J z I, this contradicts
|I| “ |J |. So aj´2 P I, which means it has appeared at least ai´1 times in ar1,i´1s and one more
time in ari,j´1s. Therefore aj´1 ą ai´1.

By (c), any small number appearing at least aj´1 times in ar1,j´1s has also appeared aj´1´1 ě

ai´1 times in ar1,i´1s. So J Ď I and hence I “ J . Therefore, ai´2 P J , so it must appear at
least aj´1 ´ ai´1 “ 1 more time in ari,j´1s. l

For each small number an with n ą N 1 ` 2, let pn be the smallest number such that
an`pn “ ai is also small for some i with n ď i ă n ` pn. In other words, an`pn “ ai is the first
small number to occur twice after an´1. If i ą n, Lemma 2 (with j “ n ` pn) implies that ai´2

appears again before an`pn , contradicting the minimality of pn. So i “ n. Lemma 2 also implies
that pn ě pn´2. So pn, pn`2, pn`4, . . . is a nondecreasing sequence bounded above by 2k (as
there are only k small numbers). Therefore, pn, pn`2, pn`4, . . . is eventually constant and the
subsequence of small numbers is eventually periodic with period at most k.

Note. Since every small number appears infinitely often, Solution 1 additionally proves that the
sequence of small numbers has period k. The repeating part of the sequence of small numbers is thus
a permutation of the integers from 1 to k. It can be shown that every permutation of the integers from
1 to k is attainable in this way.
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Solution 2. We follow Solution 1 until after Lemma 1. For each n ą N 1 we keep track of how
many times each of 1, 2, . . . , k has appeared in a1, . . . , an. We will record this information in
an updating pk ` 1q-tuple

pb1, b2, . . . , bk; jq

where each bi records the number of times i has appeared. The final element j of the pk ` 1q-
tuple, also called the active element, represents the latest small number that has appeared in
a1, . . . , an.

As n increases, the value of pb1, b2, . . . , bk; jq is updated whenever an is small. The pk ` 1q-
tuple updates deterministically based on its previous value. In particular, when an “ j is small,
the active element is updated to j and we increment bj by 1. The next big number is an`1 “ bj.
By Lemma 1, the next value of the active element, or the next small number an`2, is given by
the number of b terms greater than or equal to the newly updated bj, or

|ti | 1 ď i ď k, bi ě bju|. (1)

Each sufficiently large integer which appears i`1 times must also appear i times, with both
of these appearances occurring after the initial block of N . So there exists a global constant C
such that bi`1 ´ bi ď C. Suppose that for some r, br`1 ´ br is unbounded from below. Since the
value of br`1 ´ br changes by at most 1 when it is updated, there must be some update where
br`1 ´ br decreases and br`1 ´ br ă ´pk ´ 1qC. Combining with the fact that bi ´ bi´1 ď C for
all i, we see that at this particular point, by the triangle inequality

minpb1, . . . , brq ą maxpbr`1, . . . , bkq. (2)

Since br`1 ´ br just decreased, the new active element is r. From this point on, if the new
active element is at most r, by (1) and (2), the next element to increase is once again from
b1, . . . , br. Thus only b1, . . . , br will increase from this point onwards, and bk will no longer
increase, contradicting the fact that k must appear infinitely often in the sequence. Therefore
|br`1 ´ br| is bounded.

Since |br`1 ´ br| is bounded, it follows that each of |bi ´ b1| is bounded for i “ 1, . . . , k.
This means that there are only finitely many different states for pb1 ´ b1, b2 ´ b1, . . . , bk ´ b1; jq.
Since the next active element is completely determined by the relative sizes of b1, b2, . . . , bk to
each other, and the update of b terms depends on the active element, the active element must
be eventually periodic. Therefore the small numbers subsequence, which is either a1, a3, a5, . . .
or a2, a4, a6, . . . , must be eventually periodic.
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C8. Let n be a positive integer. Given an n ˆ n board, the unit cell in the top left corner
is initially coloured black, and the other cells are coloured white. We then apply a series of
colouring operations to the board. In each operation, we choose a 2 ˆ 2 square with exactly
one cell coloured black and we colour the remaining three cells of that 2 ˆ 2 square black.

Determine all values of n such that we can colour the whole board black.
(Peru)

Answer: The answer is n “ 2k where k is a nonnegative integer.

Solution 1. We first prove by induction that it is possible the colour the whole board black
for n “ 2k. The base case of k “ 1 is trivial. Assume the result holds for k “ m and consider
the case of k “ m` 1. Divide the 2m`1 ˆ 2m`1 board into four 2m ˆ 2m sub-boards. Colour the
top left 2m ˆ 2m sub-board using the inductive hypothesis. Next, colour the centre 2ˆ 2 square
with a single operation. Finally, each of the remaining 2m ˆ 2m sub-board can be completely
coloured using the inductive hypothesis, starting from the black square closest to the centre.
This concludes the induction.

Now we prove that if such a colouring is possible for n then n must be a power of 2.
Suppose it is possible to colour an n ˆ n board where n ą 1. Identify the top left corner of
the board by p0, 0q and the bottom right corner by pn, nq. Whenever an operation takes place
in a 2 ˆ 2 square centred on pi, jq, we immediately draw an “X”, joining the four cells’ centres
(see Figure 4). Also, identify this X by pi, jq. The first operation implies there’s an X at p1, 1q.
Since the whole board is eventually coloured, every cell centre must be connected to at least
one X. The collection of all Xs forms a graph G.

Figure 4: L-trominoes placements corresponding to colouring operations (left) and the corre-
sponding X diagram (right).

Claim 1. The graph G is a tree.
Proof. Since every operation requires a pre-existing black cell, each newly drawn X apart from
the first must connect to an existing X. So all Xs are connected to the first X and G must be
connected. Now, suppose G has a cycle. Consider the newest X involved in the cycle, it must
connect to previous Xs at at least two points. But this implies the corresponding operation will
colour at most two cells, which is a contradiction. l
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Note that in the following arguments, Claims 2 to 4 only require the condition that G is a
tree and every cell is connected to G.
Claim 2. If there’s an X at pi, jq, then 1 ď i, j ď n ´ 1 and i ” j pmod 2q.
Proof. The inequalities 1 ď i, j ď n ´ 1 are clear. Call an X at pi, jq good if i ” j pmod 2q, or
bad if i ı j pmod 2q. The first X at pi, jq “ p1, 1q is good. Suppose some Xs are bad. Since G
is connected, there must exist a good X connecting to a bad X. But this can only occur if they
connect at two points, creating a cycle. This is a contradiction, thus all Xs are good. l

Call an X at pi, jq odd if i ” j ” 1 pmod 2q, even if i ” j ” 0 pmod 2q.
Claim 3. The integer n must be even. Furthermore, there must be 4pn{2´1q odd Xs connecting
the cells on the perimeter of the board as shown in Figure 5.
Proof. If n is odd, the four corners of the bottom left cell are pn, 0q, pn ´ 1, 0q, pn ´ 1, 1q and
pn, 1q, none of which satisfies the conditions of Claim 2. So the bottom left cell cannot connect
to any X. If n is even, each cell on the edge of the board has exactly one corner satisfying the
conditions of Claim 2, so the X connecting it is uniquely determined. Therefore the cells on the
perimeter of the board are connected to Xs according to Figure 5. l

Figure 5: Highlighting the permitted points for Xs (left) and Xs on the perimeter (right).

Divide the nˆn board into n2{4 blocks of 2ˆ2 squares. Call each of these blocks a big-cell.
We say a big-cell is filled if it contains an odd X on its interior, empty otherwise. By Claim 3,
each big-cell on the perimeter must be filled.
Claim 4. Every big-cell is filled.
Proof. Recall that Xs can only be at pi, jq with i ” j pmod 2q. Suppose a big-cell centred at
pi, jq is empty. Then in order for its four cells to be coloured, there must be four even Xs on
pi´1, j´1q, pi`1, j´1q, pi´1, j`1q and pi`1, j`1q, “surrounding” the big-cell (see Figure 6).

By Claim 3, no empty big-cell can be on the perimeter. So if there exist some empty big-
cells, the boundary between empty and filled big-cells must consist of a number of closed loops.
Each closed loop is made up of several line segments of length 2, each of which separates a filled
big-cell from an empty big-cell.

Since every empty big-cell is surrounded by even Xs and every filled big-cell contains an
odd X, the two end points of each such line segment must be connected by Xs. Since these line
segments form at least one closed loop, it implies the existence of a cycle made up of Xs (see
Figure 6). This is a contradiction, thus no big-cell can be empty. l



Shortlisted problems – solutions 57

Figure 6: An empty big-cell surrounded by even Xs (left) and the boundary between empty
and filled Xs creating a cycle (right).

Therefore every big-cell is filled by an odd X, and the connections between them are provided
by even Xs. We can now reduce the n ˆ n problem to an n{2 ˆ n{2 problem in the following
way. Perform a dilation of the board by a factor of 1{2 with respect to p0, 0q. Each big-cell is
shrunk to a regular cell. For the Xs, replace each odd X at pi, jq by the point pi{2, j{2q, and
replace each even X at pi, jq by an X at pi{2, j{2q.

We claim the new resulting graph of Xs is a tree that connects all cells of an n{2ˆn{2 board.
First, two connected Xs in the original n ˆ n board are still connected after their replacements
(noting that some Xs have been replaced by single points). For each cell in the n{2ˆn{2 board,
its centre corresponds to an odd X from a filled big-cell in the original n ˆ n board, so it must
be connected to the graph. Finally, suppose there exists a cycle in the new graph. The cycle
consists of Xs that correspond to even Xs in the original graph connecting big-cells, forming a
cycle of big-cells. Since in every big-cell, the four unit squares were connected by an odd X,
this implies the existence of a cycle in the original graph, which is a contradiction.

Thus the new graph of Xs must be a tree that connects all cells of an n{2ˆn{2 board, which
are the required conditions for Claims 2 to 4. Hence we can repeat our argument, halving the
dimensions of the board each time, until we reach the base case of a 1 ˆ 1 board (where the
tree is a single point). Therefore n must be a power of 2, completing the solution.
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Solution 2. As in Solution 1, it is possible the colour the whole board black for n “ 2k.
The colouring operation is equivalent to the placement of L-trominoes. For each L-tromino

we place on the board, we draw an arrow and a node as shown in Figure 7. We also draw a
node in the top left corner of the board.

Figure 7: Tromino with corresponding arrow and node drawn.

Claim 1. The arrows and nodes form a directed tree rooted at the top left corner.
Proof. The proof is similar to the proof of Claim 1 in Solution 1, with the additional note
that the directions of the arrows inherit the order of the colouring operations, so they must be
pointing away from the top left node. l

Note that since all edges of the tree are diagonal, the nodes can only lie on points pi, jq with
i ` j ” 0 pmod 2q. This implies that we can only place down L-trominoes of one particular
parity: that is, with the centre of the L-tromino on a point with i ` j ” 0 pmod 2q. In the
remainder of the proof, we will implicitly use this parity property when determining possible
positions of L-trominoes.

Next, we show that certain configurations of edges of the tree are impossible.
Claim 2. There cannot be two edges in a “parallel” configuration (see Figure 8).
Proof. In such a configuration, the two edges can either be directed in the same direction or
opposite directions. If they point in the same direction (see Figure 8), then the L-trominoes
corresponding to the two edges overlap.

Figure 8: Parallel configuration (left) and two parallel edges, case 1 (right).

If they point in opposite directions, then we get the diagram in Figure 9. The cells
marked p‹q must lie inside the n ˆ n board, so they must be covered by L-trominoes. There is
only one possible way to cover these with a L-tromino of the right parity. But this makes the
arrows form a cycle, which cannot happen. So we have a contradiction. l

‹

‹

Figure 9: Two parallel edges, case 2.
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Claim 3. There cannot be three edges in a “zigzag” configuration, shown in Figure 10.

Figure 10: Zigzag configuration.

Proof. Assume for contradiction that there is a zigzag. Then take the zigzag with maximal
distance from the root of the tree (measured by distance along the graph from the root to the
middle edge of the zigzag).

We may assume without loss of generality that the middle edge is directed down-right. Then
the right edge must be directed up-right, since no two arrows can point to the same node. Next,
we draw in the corresponding L-trominoes, and consider the cell marked p‹q. There are two
possible ways to cover it with an L-tromino, because of the parity of L-tromino centres.

We could choose the centre of the L-tromino to be the top right corner of the cell (see
Figure 11). This immediately gives another zigzag.

‹

Figure 11: Zigzag configuration, case 1.

The other possibility is if we choose the centre of the L-tromino to be the bottom left corner
of the cell (see Figure 12). Then we need to cover the cell marked p‹‹q with an L-tromino. If

‹

‹‹

Figure 12: Zigzag configuration, case 2.

we placed the centre of the L-tromino on the top left corner of the cell, this would give two
parallel edges, contradicting Claim 2. So we must place the centre of the L-tromino on the
bottom right corner of the cell, which gives a zigzag.

In each case, we get another zigzag further away from the root of the tree, which contradicts
our assumption of maximality. So there cannot be any zigzags. l
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We now colour the nodes of the tree. Colour the root node yellow. For all other nodes, we
colour it white if it has an arrow coming out of it in a different direction to the arrow going in,
and black otherwise.
Claim 4. Any child of a black node is white.

‹

Figure 13: Black node configuration.

Proof. Suppose we have a black node with a child. Then the arrow exiting the black node must
be in the same direction as the arrow entering it by the definition of our colouring, giving the
left diagram of Figure 13.

The cell marked p‹q must be covered by an L-tromino. If the centre of this L-tromino is
the bottom left corner, then this would give an arrow leaving the black node in a different
direction, which cannot happen. So the centre of the L-tromino must instead be the top right
corner, which gives an arrow leaving the upper node in a different direction. Thus the upper
node must be white. l

Claim 5. Every white node has three children, all of which are black.

‹

‹‹

Figure 14: White node configuration.

Proof. Refer to Figure 14. Suppose we have a white node, as in the leftmost diagram. The cell
marked p‹q must be covered by an L-tromino. If the centre of this L-tromino is the bottom
right corner of the cell, then this would form a zigzag, which by Claim 3 is not allowed. So the
centre must be the top left corner.

Next, the cell marked p‹‹q must be covered by an L-tromino. If the centre of this L-tromino
is the top right corner, this would form a zigzag, so the centre must be the bottom left corner
instead. Thus we have shown that any white node has three children.

Finally, note that if any of the child nodes had three children of their own, then this would
give parallel edges in the diagram, which contradicts Claim 2. Therefore the child nodes of the
white node must all be black. l

We now know that the node colours alternate between black and white as you go down the
tree, so all white nodes lie on points with coordinates p2i, 2jq, and all black nodes lie on points
with coordinates p2i ` 1, 2j ` 1q.

Now (assuming n ą 1) we will construct a new board whose cells are 2 ˆ 2 squares of our
current board. We replace the root node and its child with a single big cell and a big root node,
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Figure 15: Replacing with larger cells and L-trominoes.

and we replace each white node and its three children with a big L-tromino, big arrow and big
node as shown in Figure 15.

Every black node is the child of the root node or a white node, so every L-tromino is involved
in exactly one replacement. Also, the parent of any white node is a black node, whose parent,
in turn, is a white node or the root. So the starting point of every big arrow will be on a big
node. Therefore we obtain an L-tromino tiling forming a tree.

This shows for n ą 1 that if an nˆn board can be tiled by L-trominoes forming a tree, then
n is even, and an n{2ˆn{2 board can also be tiled by L-trominoes forming a tree. Since a 1ˆ1
board can trivially be tiled, we conclude that the only values of n for which an n ˆ n board
can be tiled are n “ 2k.
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Geometry

G1. Let ABCD be a cyclic quadrilateral such that AC ă BD ă AD and =DBA ă 90˝.
Point E lies on the line through D parallel to AB such that E and C lie on opposite sides of
line AD, and AC “ DE. Point F lies on the line through A parallel to CD such that F and C
lie on opposite sides of line AD, and BD “ AF .

Prove that the perpendicular bisectors of segments BC and EF intersect on the circumcircle
of ABCD.

(Ukraine)

Solution 1. Let T be the midpoint of arc ŔBAC and let lines BA and CD intersect EF at K
and L, respectively. Note that T lies on the perpendicular bisector of segment BC.

A

B C

D

EF

T

K

L

Since ABCD is cyclic, BD
sin=BAD

“ AC
sin=ADC

. From parallel lines we have =DAF “ =ADC
and =BAD “ =EDA. Hence,

AF ¨ sin=DAF “ BD ¨ sin=ADC “ AC ¨ sin=BAD “ DE ¨ sin=EDA.

So F and E are equidistant from the line AD, meaning that EF is parallel to AD.
We have that KADE and FADL are parallelograms, hence we get KA “ DE “ AC and

DL “ AF “ BD. Also, KE “ AD “ FL so it suffices to prove the perpendicular bisector
of KL passes through T .

Triangle AKC is isosceles so =BTC “ =BAC “ 2=BKC. Likewise, =BTC “ 2=BLC.
Since T , K, and L all lie on the same side of BC and T lies on the perpendicular bisector
of BC, T is the centre of circle BKLC. The result follows.
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Solution 2. Let AF and DE meet ω at X and Y , respectively, and let T be as in Solution 1.
As BD ă AD, DY ∥ AB and =BAY “ =DBA ă 90˝, we have DY ă AB and Y lies on

the opposite side of line AD to C. Also from BD ă AD, we have B, C, and D all lie on the
same side of the perpendicular bisector of AB which shows AC ą AB. Combining these, we
get DY ă AB ă AC “ DE and, as Y and E both lie on the same side of line AD, Y lies in
the interior of segment DE. Similarly, X lies in the interior of segment DF .

Since AB is parallel to DY , we have Y A “ BD “ FA. Likewise XD “ AC “ ED.

A

B

C

D

E
FX

Y

T

Claim 1. T is the midpoint of arc ŊXY .
Proof. From AX ∥ CD and AB ∥ DY we have

=CAX “ =AXD “ =AYD “ =Y DB.

Since T is the midpoint of arc ŔBAC , we have =BAT “ =TDC, so

=TAX “ =CAX ` =BAC ´ =BAT “ =Y DB ` =BDC ´ =TDC “ =Y DT. l

Recall from above we have AB ă AC and analogously, DC ă DB, which shows that X, Y
and T all lie on the same side of line AD. In particular, T and A lie on opposite sides of XY
so T lies on the internal angle bisector of =XAY . Since AF “ AY , we have △ATF – △ATY ,
giving TF “ TY .

Likewise, TE “ TX, so TE “ TF , meaning that T lies on the perpendicular bisector of
segment EF as required.

Comment. The statement remains true without the length and angle conditions on cyclic quadrilateral
ABCD however additional care is required to consider different cases based on the ordering of points
on lines DE and AF . It is also possible for T to be on the external angle bisector of =XAY .
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Solution 3. From AF “ DB, AC “ DE and

=pAC,AF q “ =pAC,CDq “ =pAB,BDq “ =pDE,DBq,

triangles ACF and DEB are congruent, so CF “ BE.
Let P “ BE X CF . Since

=pCP,BP q “ =pCF,BEq “ =pAF,DBq “ =pDC,DBq,

we have that P lies on circle ABCD.

A
B

C

D

E

F

X

Y

T

P

Finally, let T be the Miquel point of the quadrilateral BCFE so T lies on circles EFP and
ABCD. Note that T is the centre of spiral similarity taking segments BE to CF and since
BE “ CF , this is in fact just a rotation, so TB “ TC and TE “ TF ; that is, the perpendicular
bisectors of BC and EF meet at T , on circle ABCD.



Shortlisted problems – solutions 65

G2. Let ABC be a triangle with AB ă AC ă BC, incentre I and incircle ω. Let X be the
point in the interior of side BC such that the line through X parallel to AC is tangent to ω.
Similarly, let Y be the point in the interior of side BC such that the line through Y parallel
to AB is tangent to ω. Let AI intersect the circumcircle of triangle ABC again at P ‰ A. Let
K and L be the midpoints of AB and AC, respectively.

Prove that =KIL ` =Y PX “ 180˝.
(Poland)

Solution 1. Let A1 be the reflection of A in I, then A1 lies on the angle bisector AP . Lines
A1X and A1Y are the reflections of AC and AB in I, respectively, and so they are the tangents
to ω from X and Y . As is well-known, PB “ PC “ PI, and since =BAP “ =PAC ą 30˝,
PB “ PC is greater than the circumradius. Hence PI ą 1

2
AP ą AI; we conclude that A1 lies

in the interior of segment AP .

A

B C

I

KL

P

X Y

A1

We have =APB “ =ACB in the circumcircle and =ACB “ =A1XC because A1X ∥ AC.
Hence, =APB “ =A1XC, and so quadrilateral BPA1X is cyclic. Similarly, it follows that
CY A1P is cyclic.

Now we are ready to transform =KIL` =Y PX to the sum of angles in triangle A1CB. By
a homothety of factor 2 at A we have =KIL “ =CA1B. In circles BPA1X and CY A1P we
have =APX “ =A1BC and =Y PA “ =BCA1, therefore

=KIL ` =Y PX “ =CA1B `
`

=Y PA ` =APX
˘

“ =CA1B ` =BCA1
` =A1BC “ 180˝.
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Comment. The constraint AB ă AC ă BC was added by the Problem Selection Committee in order
to reduce case-sensitivity. Without that, there would be two more possible configurations according to
the possible orders of points A, P and A1, as shown in the pictures below. The solution for these cases
is broadly the same, but some extra care is required in the degenerate case when A1 coincides with P
and line AP is a common tangent to circles BPX and CPY .

A

B C

I

KL

A1 “ P

X Y

A

B C

I

KL

P

X Y

A1
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Solution 2. Let BC “ a, AC “ b, AB “ c and s “ a`b`c
2

, and let the radii of the incircle,
B-excircle and C-excircle be r, rb and rc, respectively. Let the incircle be tangent to AC and AB
at B0 and C0, respectively; let the B-excircle be tangent to AC at B1, and let the C-excircle
be tangent to AB at C1. As is well-known, AB1 “ s ´ c and areap△ABCq “ rs “ rcps ´ cq.

Let the line through X, parallel to AC be tangent to the incircle at E, and the line
through Y , parallel to AB be tangent to the incircle at D. Finally, let AP meet BB1 at F .

A

B C

P

I

D

B0

K

B1

C0

L
C1

E
F

X Y

It is well-known that points B, E, and B1 are collinear by the homothety between the incircle
and the B-excircle, and BE ∥ IK because IK is a midline in triangle B0EB1. Similarly,
it follows that C, D, and C1 are collinear and CD ∥ IL. Hence, the problem reduces to
proving =Y PA “ =CBE (and its symmetric counterpart =APX “ =DCB with respect to
the vertex C), so it suffices to prove that FY PB is cyclic. Since ACPB is cyclic, that is
equivalent to FY ∥ B1C and BF

FB1
“ BY

Y C
.

By the angle bisector theorem we have

BF

FB1

“
AB

AB1

“
c

s ´ c
.

The homothety at C that maps the incircle to the C-excircle sends Y to B, so

BC

Y C
“

rc
r

“
s

s ´ c
.

So,
BY

Y C
“

BC

Y C
´ 1 “

s

s ´ c
´ 1 “

c

s ´ c
“

BF

FB1

,

which completes the solution.
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G3. Let ABCDE be a convex pentagon and let M be the midpoint of AB. Suppose
that segment AB is tangent to the circumcircle of triangle CME at M and that D lies on the
circumcircles of triangles AME and BMC. Lines AD and ME intersect at K, and lines BD
and MC intersect at L. Points P and Q lie on line EC so that =PDC “ =EDQ “ =ADB.

Prove that lines KP , LQ, and MD are concurrent.
(Belarus)

Common remarks. Each of solutions we present consists of three separate parts:

(a) proving KP ∥ MC and LQ ∥ ME;

(b) proving KL ∥ AB and, optionally, showing that points C, E, K, and L are concyclic;

(c) completing the solution either using homotheties or the parallelogram enclosed by lines
KP , MK, ML and LQ, or radical axes between three circles.

Solution 1.

(a) Notice that the condition =PDC “ =ADB is equivalent to =ADP “ =BDC, and
=EDQ “ =ADB is equivalent to =EDA “ =QDB. From line AB being tangent to circle
CME, and circles AMDE and CDME we read =ECM “ =EMA “ =EDA “ =QDB
and =MEC “ =BMC “ =BDC “ =ADP .
Using =ADP “ =MEC, the points D, E, K, and P are concyclic, which gives that
=EPK “ =EDA “ =ECM . From that, we can see that KP ∥ MC. It can be shown
similarly that C, D, Q, and L are concyclic, =LQC “ =MEC and therefore LQ ∥ ME.

R S

E

C

D

A B

P Q

M

K L

(b) Let rays DA and DB intersect circle CDE at R and S, respectively. We now observe that
=SEC “ =SDC “ =MEC, so points E, M , and S are collinear. We similarly obtain
that C, M , and R are collinear.
From =SRC “ =SEC “ =BMC we can see that RS ∥ AB. Since M bisects AB, it
follows that KL ∥ RS.

(c) Consider the homothety at D that sends RS to KL. Because KP ∥ RC and LQ ∥ SE,
that homothety sends the concurrent lines DM , RC, and SE to DM , KP , and LQ, so
these lines are also concurrent.
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Solution 2.

(a) As in Solution 1, we show the following: =ECM “ =EMA “ =EDA “ =EPK;
=MEC “ =BMC “ =BDC “ =LQC; the points C, D, Q, and L are concyclic; the
points D, E, K, and P are concyclic; KP ∥ MC; and LQ ∥ ME.

(b) Notice that triangles EKP and EMC are homothetic at E, so their circumcircles CME and
DEKP are tangent to each other at E. Similarly, circle CDQL is tangent to circle CME
at C.

Suppose that the tangents to circle CME at C and E intersect at point X. (The case when
CE is a diameter in circle CME can be considered as a limit case.) Moreover, let EX and
CX intersect circles DEAM and BCDM again at A1 ‰ E and B1 ‰ C, respectively.

X

E

C

D

A B

P Q

M

K L

A1

B1

We have XE “ XC because they are the tangents from X to circle CME. Moreover, in
circle DEAM , chords AM and A1E are tangent to circle CME, so A1E “ AM . Similarly,
we have B1C “ BM , hence A1E “ AM “ BM “ B1C. We conclude XA1 “ XB1, so the
powers of X with respect to circles DEAM and BCDM are equal. Therefore, X lies on
the radical axis of these two circles, which is DM .

Now notice that by XC “ XE, point X has equal powers to circles CDQL and DEKP ,
so DX is the radical axis of these circles. Point M lies on DX, so ME ¨MK “ MC ¨ML;
we conclude that C, E, K, and L are concyclic. Hence, by =MKL “ =ECM “ =KMA
we have KL ∥ AB.

(c) As =EPK “ =EMA “ =QLK, we have that KLQP is cyclic. The radical axes between
circles DEKP , CDQL and KLQP are DM , KP and LQ, so they are concurrent at the
radical centre of the three circles.
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Solution 3.

(b) We present another proof that KL ∥ AB.

Let AD X LQ “ I, BD X KP “ H, AB X LQ “ U and AB X KP “ V . Since

=DHP “ =DLM “ 180˝
´ =CLD “ 180˝

´ =CQD “ =DQE,

point H lies on circle DPQ. Similarly, we obtain that point I lies on this circle. Hence,
=LIH “ =QDB “ =EDA “ =EMA, and LQ ∥ ME implies that HI ∥ AB.

UV

E

C

D

A B

HI

P Q

M

K L

Let AM “ BM “ d, then we have

BU

IH
“

BL

LH
“

BM

MV
“

d

d ` AV
and

AV

IH
“

AK

KI
“

AM

MU
“

d

d ` BU
.

Hence, BU ¨ pd ` AV q “ AV ¨ pd ` BUq, so BU “ AV . Therefore, △MLU – △V KM
which implies KL ∥ AB ∥ HI.

(c) Lines MK, ML, KP and LQ enclose a parallelogram. Line DM passes through the
midpoint of KL, which the centre of the parallelogram, and passes through the vertex M .
Therefore, DM passes through the opposite vertex, which is the intersection of KP and LQ.
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G4. Let ABCD be a quadrilateral with AB parallel to CD and AB ă CD. Lines AD
and BC intersect at a point P . Point X ‰ C on the circumcircle of triangle ABC is such
that PC “ PX. Point Y ‰ D on the circumcircle of triangle ABD is such that PD “ PY .
Lines AX and BY intersect at Q.

Prove that PQ is parallel to AB.
(Ukraine)

Solution 1. Let M and N be the midpoints of AD and BC, respectively and let the perpen-
dicular bisector of AB intersect the line through P parallel to AB at R.
Lemma. Triangles QAB and RNM are similar.
Proof. Let O be the circumcentre of triangle ABC, and let S be the midpoint of CX. Since
N , S, and R are the respective perpendicular feet from O to BC, CX, and PR, we have
that quadrilaterals PRNO and CNSO are cyclic. Furthermore, P , S, and O are collinear as
PC “ PX. Since ABCX is also cyclic, we have that

=QAB “ =XCB “ =PON “ 180˝
´ =NRP “ =MNR.

Analogously, we have that =ABQ “ =RMN , so triangles QAB and RNM are similar. l

A
B

C
D

P

X

Y

Q

MN

O

R

S

Let dpZ, ℓq denote the perpendicular distance from the point Z to the line ℓ. Using that
PR ∥ AB along with the similarities QAB „ RNM and PAB „ PMN , we have that

dpQ,ABq

AB
“

dpR,MNq

MN
“

dpP,MNq

MN
“

dpP,ABq

AB
,

which implies that PQ ∥ AB.
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Solution 2. Let BD and AC intersect at T and let the line through P parallel to AB intersect
BD at V . Next, let Q1 be the foot of the perpendicular from T to PV . Finally, let Q1A intersect
circle ABC again at X 1 and Q1B intersect circle ABD again at Y 1.

A

B

C
D

P

X 1

Y 1

Q1

T

V

L

Claim. PQ1 bisects =BQ1D externally.
Proof. Let PT intersect CD at L. Let 8CD be the point at infinity on line CD. From the
standard Ceva-Menelaus configuration we have pD,C;L,8CDq is harmonic. Hence projecting
through P we have

´1 “ pD,C;L,8CDq “ pD,B;T, V q.

As pD,B;T, V q is harmonic, and also =V Q1T “ 90˝ (by construction), the claim follows. l

Now as
=Q1PD “ =BAD “ 180˝

´ =DY 1B “ 180˝
´ =DY 1Q1

we have Q1PDY 1 cyclic. By the claim, we have that P is the midpoint of arc ŔDQ1Y 1 , so
PD “ PY 1.

Since Y is the unique point not equal to D on circle ABD satisfying PD “ PY , we have
Y 1 “ Y .

Likewise X 1 “ X so Q1 “ Q and we are done.
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Solution 3. Let AX intersect circle PCX for the second time at Q1. Then

=AQ1P “ =XQ1P “ =XCP “ =XCB “ 180˝
´ =BAX “ =Q1AB

so PQ1 is parallel to AB. Hence, it suffices to show that Q1 is equal to Q. To do so, we aim to
show the common chord of circles PCX and PDY is parallel to AB, since then by symmetry
Q1 is also the second intersection of BY and circle PDY .

A
B

C
D

P

X

Y

Q

OX

OY

OD

OC

Let the centres of circles PCX and PDY be OX and OY , respectively. Let the centres of
circles ABC and ABD be OC and OD, respectively.

Note P , OX , and OC are collinear since they all lie on the perpendicular bisector of CX.
Likewise P , OY , and OD are collinear on the perpendicular bisector of DY . By considering the
projections of OX and OC onto BC, and OY and OD onto AD, we have

POX

POC

“

PC
2

PB`PC
2

“

PD
2

PA`PD
2

“
POY

POD

.

Hence OXOY is parallel to OCOD, which is perpendicular to AB as desired.
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G5. Let ABC be a triangle with incentre I, and let Ω be the circumcircle of triangle BIC.
Let K be a point in the interior of segment BC such that =BAK ă =KAC. The angle bisector
of =BKA intersects Ω at points W and X such that A and W lie on the same side of BC, and
the angle bisector of =CKA intersects Ω at points Y and Z such that A and Y lie on the same
side of BC.

Prove that =WAY “ =ZAX.
(Uzbekistan)

Common remarks. The key step in each solution is to prove that =ZAK “ =IAY and
=WAK “ =IAX. The problem is implied by these equalities, as we then have that

=WAY “ =WAK ` =KAI ` =IAY “ =IAX ` =KAI ` =ZAK “ =ZAX.

B C

A

K

I
W

X

Y

Z

We now present several proofs that =ZAK “ =IAY , with =WAK “ =IAX following in
an analogous manner.

Solution 1. Let Γ be circle ABC and ω be circle AY Z. Let O, M , and S be the centres of
Γ, Ω, and ω, respectively. Let AK intersect Γ again at P , and let the angle bisector of =ZAY
intersect ω again at N .

Ω

Γω

B C

A

K

I
Y

Z

O
S

M
P

N
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By power of a point from K to Γ and Ω, we have that KA ¨KP “ KB ¨KC “ KY ¨KZ, so
P also lies on ω. The pairwise common chords of Γ, Ω, and ω are then AP K OS, BC K OM ,
and Y Z K MS, so we have that =OMS “ =CKY “ =Y KA “ =MSO. As M lies on Γ and
OM “ OS, S also lies on Γ. Note that N lies on MS as NY “ NZ, so

=PAN “
1

2
=PSN “

1

2
=PSM “

1

2
=PAM.

Thus, AN bisects =PAM in addition to =ZAY , which means that =ZAK “ =IAY as K lies
on AP and I lies on AM .

Solution 2. Define M and P as in Solution 1, and recall that AY PZ is cyclic. Let Q be
the second intersection of the line parallel to BC through P with circle ABC and let J be the
incentre of triangle APQ.

B C

A

K

I Y

Z M

P

Q

J

Since PQ is parallel to BC and =BAP ă =PAC, the angle bisector of =APQ is parallel
to the angle bisector of =AKC. Hence, PJ is parallel to Y Z. As M is the midpoint of ŊPQ
on circle APQ, we have that MP “ MJ . Then since segments Y Z and PJ are parallel and
have a common point M on their perpendicular bisectors, PJY Z is cyclic with JY “ PZ. It
follows that J also lies on circle AY PZ and that =ZAP “ =JAY “ =IAY .

Comment. The proof of the analogous case of =WAK “ =IAX is slightly different. In this case,
J should be defined as the A-excentre of APQ so that PJ is the external bisector of =APQ and
PJ ∥ WX. The proof is otherwise exactly the same.
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Solution 3. As in the previous solutions, let M be the centre of Ω. Let L be the intersection
of AM and BC, and let L1 be the reflection of L over Y Z. Let the circle MY Z intersect AM
again at T .

B C

A

K

I Y

Z M

L

L1

T

Note that as M is the midpoint of ŊBC on circle ABC and L is the foot of the bisector
of =BAC, we have that MA ¨ ML “ MI2 “ MY 2. It follows by power of a point that MY is
tangent to circle ALY , so =LAY “ =LYM . Using directed angles, we then have that

>AY T “ >MTY ´ >MAY “ >MZY ´ >LYM “ >ZYM ´ >LYM “ >ZY L “ >L1Y Z,

where we use the fact that MY “ MZ and that L and L1 are symmetric about Y Z. Thus, Y T
and Y L1 are isogonal in =AY Z. Analogously, we have that ZT and ZL1 are isogonal in =Y ZA.
This means that T and L1 are isogonal conjugates in triangle AY Z, which allows us to conclude
that =ZAK “ =IAY since L1 lies on AK and T lies on AI.

Comment. Owing to the condition =BAK ă =KAC, points L1 and T lie inside triangle AY Z.
However, if one tries to write down the same proof for =WAK “ =IAX, the analogues L1

1 and T1 of
L1 and T would lie outside triangle AWX. Thus, the solution has been written using directed angles
so that it applies directly to this case as well. It is also possible that L1

1 lies on circle AWX and T1 is
a point at infinity. In this case, it is straightforward to interpret the directed angle chase to prove the
isogonality, and the isogonality also follows from this scenario being a limit case of other configurations.

Note. The original proposal remarks that this problem is a special case of a more general property:

A convex quadrilateral ABCD is inscribed in a circle ω. The bisectors between AC and BD
intersect ω at four points, forming a convex quadrilateral PQRS. Then the conditions

XA ¨ XC “ XB ¨ XD and >pXP,XQq “ >pXS,XRq

on point X are equivalent.

The Problem Selection Committee believes that the proof of this generalisation is beyond the scope
of the competition and considers the original problem to be more suitable.
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G6. Let ABC be an acute triangle with AB ă AC, and let Γ be the circumcircle of ABC.
Points X and Y lie on Γ so that XY and BC intersect on the external angle bisector of =BAC.
Suppose that the tangents to Γ at X and Y intersect at a point T on the same side of BC
as A, and that TX and TY intersect BC at U and V , respectively. Let J be the centre of the
excircle of triangle TUV opposite the vertex T .

Prove that AJ bisects =BAC.
(Poland)

Solution 1. Let N be the midpoint of ŔBAC on Γ, and let NX and NY intersect BC at W
and Z, respectively.
Claim. Quadrilateral WXY Z is cyclic, and its circumcentre is J .
Proof. As N is the midpoint of ŔBAC , W and Z lie on BC, and X and Y are the second
intersections of NW and NZ with Γ, we have that WXY Z is cyclic.

Let the parallel to BC through N intersect TU and TV at U 1 and V 1, respectively. Then U 1

is the intersection of the tangents to Γ at N and X, so U 1N “ U 1X. As NU 1 ∥ BC, U 1NX is
similar to UWX, so UW “ UX as well. Hence, the perpendicular bisector of WX is the internal
bisector of =XUW , which is the external bisector of =V UT . Analogously, the perpendicular
bisector of Y Z is the external bisector of =TV U . This means that the circumcentre of WXY Z
is the intersection of the external bisectors of =V UT and =TV U , which is J . l

B C

A

X

N

L

Y

U V

T

W Z

U 1 V 1

J

Let AN intersect BC at L, so XY passes through L as well. By power of a point from L to
Γ and circle WXY Z, we have that LA ¨ LN “ LX ¨ LY “ LW ¨ LZ, so WANZ is also cyclic.
Thus, A is the Miquel point of quadrilateral WXY Z. As WXY Z is cyclic with circumcentre J
and its opposite sides WX and Y Z intersect at N , we have that AN K AJ . Since AN is the
external bisector of =BAC, this implies that AJ is the internal bisector of =BAC.
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Solution 2. Let the internal and external angle bisectors of =BAC intersect BC at K and L,
respectively. Let AK intersect circle ABC again at M , and let D be the intersection of the
tangents to Γ at B and C. Let Ω be the T -excircle of TUV , and let ω be the incircle of DBC.
Claim. The points T , K, and D are collinear.
Proof. Note that BC and XY are the polars of T and D with respect to Γ. By La Hire’s
Theorem, TD is the polar of L with respect to Γ. As pB,C;K,Lq “ ´1, K also lies on the
polar of L, thus proving the collinearity. l

Claim. The incentre of DBC is M .
Proof. We have that =MBC “ =MAC “ 1

2
=BAC “ 1

2
=DBC, so BM bisects =DBC.

Similarly, CM bisects =BCD, so M is the incentre of DBC. l

Γ

ω

Ω

B C

A

X

L

Y

U
V

T

J

K

M

D

Claim. The intersection of the common external tangents of Ω and ω is K.
Proof. Let K 1 be the intersection of the common external tangents of Ω and ω. As Ω and ω
are both tangent to BC and lie on the same side of BC opposite to A, K 1 lies on BC. As T is
the intersection of the common external tangents of Γ and Ω and D is the intersection of the
common external tangents of Γ and ω, by Monge’s theorem K 1 lies on TD. As K 1 lies on both
BC and TD, it is the same point as K. l

Hence, K is collinear with the centres of Ω and ω, which are M and J , respectively. As K
and M both lie on the bisector of =BAC, so does J .

Note. It can be shown that circles AUV and ABC are tangent and that the tangents from U and V
to circle ABC different from TU and TV intersect at a point W on line TK. Reframing the problem
in terms of quadrilateral TUWV using these properties, we obtain the following problem:

Let ABCD be a convex quadrilateral with an incircle ω, and let AC and BD intersect at P . Point E
lies on ω such that the circumcircle of ACE is tangent to ω. Prove that if B and E lie on the same
side of line AC, then the centre of the excircle of triangle ABC opposite the vertex B lies on line EP .

While this is an appealing statement, the Problem Selection Committee is uncertain about its
difficulty and whether it has solutions that do not proceed by reducing to the original problem. Thus,
it is believed that the original statement is more suitable for the competition.
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G7. Let ABC be a triangle with incentre I such that AB ă AC ă BC. The second
intersections of AI, BI, and CI with the circumcircle of triangle ABC are MA, MB, and MC ,
respectively. Lines AI and BC intersect at D and lines BMC and CMB intersect at X. Suppose
the circumcircles of triangles XMBMC and XBC intersect again at S ‰ X. Lines BX and CX
intersect the circumcircle of triangle SXMA again at P ‰ X and Q ‰ X, respectively.

Prove that the circumcentre of triangle SID lies on PQ.
(Thailand)

Solution 1.

A

B
C

O
I

MA

MB

MC

D

X

S

P

Q

Let O be the circumcentre of △ABC. First we note from standard properties of the Miquel
point S we have:

• △SMCMB „ △SBC „ △SPQ; p˚q

• I and S are inverses with respect to circle ABC;

• =OSX “ 90˝.

Claim 1. =MAPB “ =CDA.
Proof. From the above we have △OMAI „ △OSMA and

=MAPB “ =MAPX “ =MASX “ 90˝
`=MASO “ 90˝

`=OMAI “ =MABA “ =CDA. l
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Claim 2. MCB
BP

“
MBC
CQ

“ AI
ID

.
Proof. Observe that =PMCMA “ =BMCMA “ =DAC and =MCMAB “ =ICD. Combining
these with Claim 1 shows MCPMAB „ ADCI. Therefore, MCB

BP
“ AI

ID
. Similarly, MBC

CQ
“ AI

ID
.

l

Claim 3. DP
DQ

“ IB
IC

.
Proof. Firstly, observe that =ICB “ =AMBMC and =CBI “ =MBMCA which gives that
△IBC „ △AMCMB. This, combined with Claim 2, is enough to show △DPQ „ △IBC by
linearity, proving the claim. l

Claim 4. IP
IQ

“ IB
IC

.
Proof. Combining △IBMC „ △ICMB with Claim 2 shows IBMCP „ ICMBQ giving the
result. l

Finally, we have that
SP

SQ
“

SB

SC
“

BMC

CMB

“
IB

IC

from p˚q and △IBMC „ △ICMB. Putting this together with Claims 3 and 4, we have that

IB

IC
“

DP

DQ
“

IP

IQ
“

SP

SQ
,

which shows that circle SID is an Apollonius circle with respect to P and Q, giving the desired
conclusion.

Comment. The condition AB ă AC ensures S ‰ X. We also need to avoid the case =BAC “ 60˝

as then BMC ∥ CMB.



82 Bath, United Kingdom, 10th–22nd July 2024

Solution 2. We use Claim 1 from Solution 1. We will show that P and Q are inverses in
circle SID which implies the result. Perform an inversion in circle BIC and denote the inverse
of a point ‚ by ‚1.

A

B
C

O

I

J

MA

MB

MC

DY

X

S

P

Q

P 1

Q1

P1

Q1
A1

Y 1

Claim 1. S 1 “ J where J is the reflection of I across BC.
Proof. We have that S and I are inverses in circle ABC. Inverting this assertion in circle BIC
shows that S 1 and I are inverses with respect to line BC, which is just a reflection in line BC.

l

Let Y “ MBMC XBC. From =IMCMB “ =MBMCA and =AMBMC “ =MCMBI, we see
that A and I are reflections in line MBMC so Y A “ Y I. We have that circle SID maps to
circle AIJ which, from the previous comment, has centre Y . Inverting the conclusion that P
and Q are inverses with respect to circle SID in circle BIC, it suffices to show P 1 and Q1 are
inverses with respect to circle AIJ or equivalently, that Y P 1 ¨ Y Q1 “ Y A2.
Claim 2. Circle XSMA maps to line Y J under the inversion in circle BIC.
Proof. Since circle BIC has centre MA, the inverse of this circle is a line. By Claim 1, this
line passes through J hence it suffices to prove that circle XSMA passes through Y 1. From
inverting line BC in circle BIC, we have that BCMAY

1 is cyclic so

Y S ¨ Y X “ Y B ¨ Y C “ Y Y 1
¨ YMA.

where we have used that Y , S and X are collinear by a standard property of the Miquel point.
Hence Y 1 lies on circle XSMA as required. l
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Let A1 be the reflection of A in the perpendicular bisector of BC. Using Claim 1 from
Solution 1,

=P 1BMA “ =MAPB “ =CDA “ 180˝
´ =ACMA “ 180˝

´ =MABA1.

Hence, P 1, B, and A1 are collinear. Similarly Q1, C, and A1 are collinear. Let P1 and Q1 be
the reflections of P 1 and Q1 across BC. As P 1 and Q1 lie on line Y J , it follows that P1 and Q1

lie on line Y I. Also from the previous collinearities, we get BP1 ∥ AC and CQ1 ∥ AB.
We have now reduced the problem to the following:

Claim 3 (Inverted Problem). Let ABC be a triangle with incentre I. Let Y be the point on BC
such that Y A “ Y I. Let P1 and Q1 be points on Y I such that BP1 ∥ AC and CQ1 ∥ AB.
Then Y A2 “ Y P1 ¨ Y Q1.

A

B C

I

Y

P1

Q1

E

F

Proof. Let Y I intersect AB and AC at E and F , respectively. From the parallel lines, we get
that △BEP1 and △CQ1F are homothetic with centre Y . Thus we have

Y E

Y P1

“
Y Q1

Y F
ùñ Y P1 ¨ Y Q1 “ Y E ¨ Y F.

Moreover, AI bisects =EAF and Y A “ Y I so the circle centred at Y with radius Y A is the
Apollonius circle of △AEF with respect to the feet of the internal and external angle bisectors
at A. This gives Y E ¨ Y F “ Y A2. Combining these results proves the claim. l
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Solution 3. As in Solution 1, let O be the circumcentre of △ABC. Let XI intersect
circle XSMA again at Z ‰ X and let Y “ BC X MBMC . Let X˚ be the inverse of X in
circle ABC. We will use the properties of Miquel point S noted at the top of Solution 1 and
in addition, that S lies on line XY .

A

B C
O

I

MA

MB

MC

DY

X

S

Q

Z

X˚

K P

Claim 1. Y SAD is cyclic.
Proof. From OMAKBC and Y SKOS we have =DY S “ 180˝ ´ =SOMA. From inverting
collinear points A, I and MA in circle ABC we get ASMAO is cyclic which gives

=SOMA “ =SAMA “ =SAD ùñ =SAD ` =DY S “ 180˝

proving the claim. l

Claim 2. X˚ lies on circle BIC which has centre MA.
Proof. This follows immediately from inverting circle SBCX in circle ABC. l

Claim 3. Z lies on circle SID.
Proof. We have that

=IZS “ =XMAS “ =OMAS ´ =OMAX “ =MAIO ´ =MAX
˚O “ =DIO ´ =MAX

˚O

where in the penultimate step we inverted in circle ABC to get the angle equalities.
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From Brocard’s Theorem applied to cyclic quadrilateral BMCMBC, we get Y , I, and X˚

collinear and =Y X˚O “ 90˝. This gives that

=MAX
˚O “ 90˝

´ =IX˚MA “ 90˝
´ =MAIX

˚
“ 90˝

´ =AIY,

where the second equality is by Claim 2. We have that A and I are reflections in line MBMC .
Hence,

90˝
´ =AIY “ 90˝

´ =Y AD “ 90˝
´ =Y SD “ =DSO

where the second step is by Claim 1, and in the last step we are using OSKY S. Putting these
together,

=IZS “ =DIO ´ =DSO “ =IDS,

proving the claim. l

Let the tangents from S and Z to circle XSMA intersect at K. Observe from the standard
Ceva-Menelaus configuration,

´1 “ pXY,XI;XB,XCq
X
“ pS,Z;P,Qq .

This shows that K lies on line PQ. We then have

=ZKS “ 180˝
´ 2=SXZ “ 2 p90˝

´ =SXIq “ 2 p180˝
´ =SIZq ,

where we are using =ISX “ 90˝. As K lies on the perpendicular bisector of SZ, this is enough
to show that K is the centre of circle SIDZ completing the proof.
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Solution 4. Solution 1 solves the problem by establishing SP
SQ

“ IP
IQ

“ DP
DQ

, which implies
that circle SID is an Apollonius circle with respect to P and Q. We demonstrate an alternate
approach that only requires us to show two of the ratios SP

SQ
, IP

IQ
, and DP

DQ
to be equal. This can

arise from missing some of the observations in Solution 1, for example not proving Claim 3.
Claim. Given we have shown two of the ratios listed above to be equal, it suffices to show that
circle SID is orthogonal to circle SXMA, which the same circle as SPQ.
Proof. Supposing we have shown the orthogonality, if SP

SQ
“ IP

IQ
or SP

SQ
“ DP

DQ
, then we immedi-

ately have that circle SID is an Apollonius circle with respect to P and Q. If IP
IQ

“ DP
DQ

and
S does not lie on the Apollonius circle C defined by this common ratio, then I and D lie on
two distinct circles orthogonal to circle SPQ, namely circle SID and C. This implies that I
and D are inverses with respect to circle SPQ, which is a contradiction as both I and D lie
inside circle SPQ. l

Throughout this solution, we will use the properties of S from the beginning of Solution 1.
Define O and Y as in previous solutions, and let E be the second intersection of circles SOMA

and SMBMC .

A

B
C

O
I

MA

MB

MC

Y

S

E

M 1
A

B1

C 1

Lemma. We have that OE K AY .
Proof. Let M 1

A, B1, and C 1 be the respective reflections of MA, B, and C over line MBMC .
As noted in Solution 3, A and I are reflections across MBMC . Because MA is the centre
of circle BIC, it follows that M 1

A is the centre of circle AB1C 1. On the other hand, Y lies
on MBMC , so we have that Y B ¨ Y C “ Y B1 ¨ Y C 1. Thus, Y lies on the radical axis of
circles ABC and AB1C 1, so OM 1

A K AY . Finally, note that the inverses of circles SOMA

and SMBMC in circle ABC are line IMA and circle IMBMC respectively, so E and M 1
A are

inverses in circle ABC. Thus, E lies on OM 1
A and the lemma follows. l
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Let T denote the composition of an inversion at S with radius
?
SI ¨ SO with a reflection

across line SI. By standard properties of the Miquel point, T swaps X and Y and any points
Z1 and Z2 on circle ABC with I P Z1Z2. Hence, T swaps the pairs pA,MAq, pB,MBq, pC,MCq,
pO, Iq, and pX, Y q. As D “ AI XBC and E is the intersection of circles SOMA and SMBMC ,
we have that T pDq “ E. Thus, T maps circles SID and SXMA to lines OE and AY , so by
the Lemma, circles SID and SXMA are orthogonal, as required.
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G8. Let ABC be a triangle with AB ă AC ă BC, and let D be a point in the interior of
segment BC. Let E be a point on the circumcircle of triangle ABC such that A and E lie on
opposite sides of line BC and =BAD “ =EAC. Let I, IB, IC , JB, and JC be the incentres of
triangles ABC, ABD, ADC, ABE, and AEC, respectively.

Prove that IB, IC , JB, and JC are concyclic if and only if AI, IBJC , and JBIC concur.
(Canada)

Solution 1. Let X be the intersection of IBJC and JBIC . We will prove that, provided that
AB ă AC ă BC, the following two conditions are equivalent:

(1) AX bisects =BAC;

(2) IB, IC , JB, and JC are concyclic.

Let circles AIB and AIC meet BC again at P and Q, respectively. Note that AB “ BQ
and AC “ CP because the centres of circles AIB and AIC lie on CI and BI, respectively.
Thus, B, P , Q, and C are collinear in this order as BQ`PC “ AB`AC ą BC by the triangle
inequality.
Claim 1. Points P , JB, and IC are collinear, and points Q, IB, and JC are collinear.
Proof. We have that

=AJBB “ 90˝
`

1

2
=AEB “ 90˝

`
1

2
=ACB “ =AIB “ =APB,

so ABJBP is cyclic. As A is the centre of spiral similarity between ABE and ADC, it is
also the centre of spiral similarity between ABJB and ADIC . Hence, A is the Miquel point of
self-intersecting quadrilateral BDICJB, so P lies on JBIC . Analogously, we have that Q lies
on IBJC . l
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Throughout the rest of the solution, we will use directed angles.
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Proof of p1q ùñ p2q. We assume that p1q holds.
Claim 1 and the similarities ABDIB „ AECJC and ABEJB „ ADCIC tell us that

>IBXIC “ >JCQC ` >BPJB “ >JCAC ` >BAJB “ >IBAD ` >DAIC “ >IBAIC ,

so AIBXIC is cyclic. Also, as X P AI, we have that

>IBAX “ >BAI ´ >BAIB “ >IBAIC ´ >IBAD “ >DAIC .

Using these, we have that

>IBICP “ >IBAX “ >DAIC “ >BAJB “ >BPJB,

so IBIC ∥ BC. Hence,

>IBICJB “ >BPJB “ >BIJB “ >IBIJB,

so IIBJBIC is cyclic. Analogously, we have that IICJCIB is cyclic, so IBJBJCIC is cyclic, thus
proving p2q. l

Proof of p2q ùñ p1q. We assume that p2q holds.
Claim 2. Circles IBC, IJBIC , and IIBJC are tangent at I.
Proof. Using the cyclic quadrilateral BIJBP , we have that

>IBC “ >IBP “ >IJBP “ >IJBIC .

As C, IC , and I are collinear, the tangents to circles IJBIC and IBC at I coincide, so circles
IJBIC and IBC are tangent at I. Analogously, circles IIBJC and IBC are tangent at I, so all
three circles are tangent at I. l

Claim 3. Point I lies on circle IBJBJCIC .
Proof. Suppose that I does not lie on circle IBJBJCIC . Then the circles IIBJC , IJBIC , and
IBJBJCIC are distinct. We apply the radical axis theorem to these three circles. By Claim 2,
the radical axis of circles IIBJC and IJBIC is the tangent to circle IBC at I. As IBJC and JBIC
intersect at X, IX must be tangent to circle IBC.

However, by Claim 1 we have that X is the intersection of PIC and QIB. As D lies on
the interior of segment BC, IB lies on the interior of segment BI and IC lies on the interior of
segment CI. Hence, IB, P , Q, and IC all lie on the perimeter of triangle IBC in this order,
so X must be in the interior of triangle IBC. This means that IX cannot be tangent to
circle BIC, so I must lie on circle IBJBJCIC . l

By Claims 2 and 3, circles IIBIC and IBC are tangent, so IBIC ∥ BC. Since IBJBJCIC is
cyclic, we have that

>PJBJC “ >ICJBJC “ >ICIBJC “ >PQIB “ >PQJC ,

so PJBJCQ is cyclic. By the radical axis theorem on circles AIPJB, AIQJC , and PJBJCQ,
we have that AI, IBJC , and JBIC concur at X, thus proving p1q. l

Solution 2. Let X be the intersection of IBJC and JBIC . As in Solution 1, we will prove that
conditions p1q and p2q are equivalent. To do so, we introduce the new condition:

p3q IBIC ∥ BC

and show that p3q is equivalent to both p1q and p2q, provided that AB ă AC ă BC.
Note that ABD

`
„ AEC and ABE

`
„ ADC, where `

„ denotes positive similarity. We will
make use of the following fact.
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Fact. For points P , P1, P2, P3, and P4, the positive similarities

PP1P2
`
„ PP3P4 and PP1P3

`
„ PP2P4

are equivalent.

Proof of p1q ðñ p3q. Let AIB and AIC meet BC at S and T , respectively. Let AJB meet
BE at K, AJC meet CE at L, and KT and SL meet at Y .
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Claim 1. Line AY bisects =BAC.
Proof. Let Y 1 be the intersection of KT and the bisector of =BAC. As

=BAK “
1

2
=BAE “

1

2
=DAC “ =TAC,

AY 1 also bisects =KAT . Hence, Y 1 is the foot of the bisector of =KAT in triangle AKT .
Using the Fact, we have that

ABE
`
„ ADC ùñ ABEK

`
„ ADCT

ùñ ABD
`
„ AKT

`
„ AEC

ùñ ABDS
`
„ AKTY 1 `

„ AECL

ùñ ABEK
`
„ ASLY 1 `

„ ADCT.

As K lies on BE, we have that Y 1 lies on SL, so Y “ Y 1 and AY bisects =BAC. l

We show that X lies on AY if and only if IBIC ∥ BC, which implies the equivalence of
p1q and p3q by Claim 1. Let AY meet IBJC and JBIC at X1 and X2, respectively. As ABD
and AEC are similar, we have that AIB

AS
“

AJC
AL

, so IBJC ∥ SL. Analogously, we have that
JBIC ∥ KT . Hence, X1 and X2 coincide with X if and only if

AIB
AS

“
AX1

AY
“

AX2

AY
“

AIC
AT

,

which is equivalent to IBIC ∥ BC. l
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Proof of p2q ðñ p3q. Let AJB and AJC meet circle ABC at M and N , respectively, and let
I 1
B and I 1

C be the A-excentres of ABD and ADC, respectively.
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Claim 2. Lines IBIC , I 1
BI

1
C , and BC are concurrent or pairwise parallel.

Proof. We work in the projective plane. Let IBIC and I 1
BI

1
C meet BC at Z and Z 1, respec-

tively. Note that Z is the intersection of the external common tangents of the incircles of
ABD and ADC and AD is a common internal tangent of the incircles of ABD and ADC,
so pAD,AZ;AIB, AICq “ ´1. Applying the same argument to the A-excircles of ABD and
ADC gives pAD,AZ 1;AI 1

B, AI
1
Cq “ ´1, which means that Z “ Z 1. Thus, IBIC , I 1

BI
1
C , and BC

concur, possibly at infinity. l
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Claim 3. Lines JBIC and CM are parallel, and lines IBJC and BN are parallel.
Proof. Using the Fact, we have that

ABE
`
„ ADC ùñ ABEJB

`
„ ADCIC ùñ AJBIC

`
„ ABD.

Thus, =pBD, JBICq “ =BAJB “ =BCM , so JBIC ∥ CM . Similarly, we have that IBJC ∥ BN .
l

Claim 4. The centre of spiral similarity between JBJC and I 1
BI

1
C is A.

Proof. As IB and I 1
B are respectively the incentre and A-excentre of triangle ABD, we have

that ABI 1
B

`
„ AIBD. Using the similarity ABD

`
„ AEC, this means that ABI 1

B
`
„ AJCC, so

AB ¨AC “ AI 1
B ¨AJC and =BAI 1

B “ =JCAC. Similarly, we have that AB ¨AC “ AJB ¨AI 1
C and

=BAJB “ =I 1
CAC. Together, these imply that AI 1

B ¨AJC “ AJB ¨AI 1
C and =JBAJC “ =I 1

BAI
1
C ,

so AJBJC
`
„ AI 1

BI
1
C . l

We proceed using directed angles. By Claim 3, we have that IBJBJCIC is cyclic if and only
if

>IBICJB “ >IBJCJB ðñ >IBICJB ` >MCB “ >IBJCJB ` >MNB

ðñ >pIBIC , BCq “ >pMN, JBJCq.

By Claim 4, we have that

>pJBJC , I
1
BI

1
Cq “ >JBAI

1
B

“ >BAIB ` >MAB

“ >EAJC ` >MAB

“ >NAC ` >MAB

“ >pMN,BCq,

which is equivalent to >pBC, I 1
BI

1
Cq “ >pMN, JBJCq. Thus, IBJBJCIC is cyclic if and only if

>pIBIC , BCq “ >pBC, I 1
BI

1
Cq. (˚)

Suppose that IBIC is parallel to BC. By Claim 2, I 1
BI

1
C is also parallel to BC, so we have

that >pIBIC , BCq “ >pBC, I 1
BI

1
Cq “ 0˝. Thus, p˚q is satisfied, so IBJBJCIC is cyclic.
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Suppose now that IBIC is not parallel to BC while IBJBJCIC is cyclic. By Claim 2, IBIC ,
I 1
BI

1
C , and BC concur at a point Z. As IB and IC lie on segments BI and CI, Z must lie outside

segment BC. Since A is the intersection of the common external tangents of the incircle and
A-excircle of ABD and ZD is a common internal tangent of the incircle and A-excircle of ABD,
we have that pZA,ZD;ZIB, ZI

1
Bq “ ´1. By p˚q, ZD bisects =IBZI

1
B, so =AZD “ 90˝: that

is, Z is the foot from A to BC. But this implies that =ABC or =BCA is obtuse, contradicting
the fact that AB ă AC ă BC. l

Comment. While we have written the solution using harmonic bundles for the sake of brevity, there
are ways to prove Claim 2 and obtain the final contradiction without the use of projective geometry.
Claim 2 can be proven using an application of Menelaus’s theorem, and the final contradiction can be
obtained using the fact that an excircle of a triangle is always larger than its incircle.

Solution 3. Let ωB and ωC denote circles AIB and AIC, respectively. Introduce P , Q and X
as in Solution 1 and recall from Claim 1 in Solution 1 that P , JB and IC are collinear with
JB lying on ωB. From this, we can define JB and IC in terms of X by IC “ XP X CI and
JB ‰ P as the second intersection of line XP with ωB. Similarly, we can define IB “ XQXBI
and JC ‰ Q as the second intersection of line XQ with ωC . Note that this now detaches the
definitions of points IB, IC , JB, and JC from points D and E.

Let ℓ be a line passing through I. We now allow X to vary along ℓ while fixing △ABC and
points I, P , and Q. We use the definitions from above to construct IB, IC , JB, and JC . We
will classify all cases where these four points are concyclic. Throughout the rest of the solution
we use directed angles and directed lengths.

For nondegeneracy reasons, we exclude cases where X “ I and X lies on line BC, which
means that IB, JB ‰ B and IC , JC ‰ C. We also exclude the cases where ℓ is tangent to either
ωB or ωC . Similar results hold in these cases and they can be treated as limit cases.
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Claim 1. Line IBJB passes through a fixed point on ωB, and line ICJC passes through a fixed
point on ωC as X varies on ℓ.
Proof. Let U ‰ JB be the second intersection of IBJB with ωB. We have by the law of sines
that

sin>IJBU

sin>UJBB
“

sin>IJBIB
sin>IBJBB

“
sin>JBIIB
sin>JBBIB

¨
IIB
IBB

“
sin>JBIB

sin>JBBI
¨
IIB
IBB

“
sin>XPQ

sin>XPI
¨
IIB
IBB

.

We also have
IIB
IBB

“
sin>IQIB
sin>IBQB

¨
|IQ|

|BQ|
“

sin>IQX

sin>XQP
¨

|IQ|

|BQ|
.

Combining these and applying Ceva’s Theorem in △PIQ with point X, we get

sin>IJBU

sin>UJBB
“

sin>XPQ

sin>XPI
¨
sin>IQX

sin>XQP
¨

|IQ|

|BQ|
“

sin>XIQ

sin>XIP
¨

|IQ|

|BQ|
“

sin>pℓ, IQq

sin>pℓ, IP q
¨

|IQ|

|BQ|
,

which is independent of the choice of X on ℓ. As >IJBU ` >UJBB “ >IJBB “ >IAB is
fixed, this is enough to show point U is fixed on ωB.

Similarly, if we define V ‰ JC to be the second intersection of ICJC with ωC , we get that
V is fixed on ωC . l

Let G ‰ X and H ‰ X be the second intersections of ℓ with ωB and ωC , respectively which
exist as we are assuming ℓ is not tangent to either ωB or ωC .
Claim 2. Points U , G and Q are collinear and points V , H and P are collinear.
Proof. Taking X “ G, we have JB “ G and IB “ XQXBI. Both of these points lie on line QG
which, by Claim 1, shows that U , G, Q are collinear. Similarly, V , H, P are collinear. l

Claim 3. Points IB, IC , JB, JC are concyclic if and only if points P , Q, G, H are concyclic.
In particular, this depends only on ℓ, not on the choice of X on ℓ.
Proof. We have that

>ICJBIB “ >PJBU “ >PGU “ >PGQ

>ICJCIB “ >V JCQ “ >V HQ “ >PHQ.

Thus >ICJBIB “ >ICJCIB ðñ >PGQ “ >PHQ which proves the claim. l

Claim 4. P , Q, G, H are concyclic if and only if ℓ P tIA, IP, IQ, tu where t is the tangent to
circle BIC at I.
Proof. When ℓ “ IA, we have G “ H “ A so the cyclic condition from Claim 3 holds. Similarly,
when ℓ “ IP or ℓ “ IQ, G “ P or H “ Q, respectively, so again the cyclic condition holds.

Now, consider the case where ℓ R tIA, IP, IQu. In this case it is straightforward to see that
the four points P , Q, G, and H are distinct. We then have that >QPG “ >BPG “ >BIG,
so

PQGH concyclic ðñ >QHG “ >QPG ðñ >QHG “ >BIG ðñ QH ∥ BI.

We also have that >CQH “ >CIH, so

ℓ tangent to circle BIC ðñ >CIH “ >CBI ðñ >CQH “ >CBI ðñ QH ∥ BI.

Hence, in this case P , Q, G, H are concyclic if and only if ℓ is tangent to circle BIC, as claimed.
l
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We now revert to using points D and E to define points IB, IC , JB, JC , and X, returning
to the original set-up.
Claim 5. Let Γ be the circle passing through P and Q that is tangent to IP and IQ, which
exists as IP “ IQ “ IA. Then X lies on Γ. Furthermore, X lies on the same side of BC as A
and does not lie on line BC.
Proof. We have that

>XPI “ >JBPI “ >JBAI “ >BAI ´ >BAJB “ >JBAJC ´ >JBAE

“ >EAJC “ >JCAC “ >JCQC “ >XQP,

so circle XPQ is tangent to IP . Similarly, circle XPQ is tangent to IQ, so X lies on Γ.
As D lies in the interior of segment BC, IC lies in the interior of segment CI. Since X is

the second intersection of PIC with Γ and IP is tangent to Γ, X lies in the interior of ŊPQ on
Γ on the same side of BC as A. This implies the second part of the claim. l

By Claim 5, we cannot have ℓ P tIP, IQu in the original problem. Furthermore, as shown
in Claim 2 of Solution 1, we have that X lies inside triangle IBC, which means that ℓ ‰ t.
Thus, the only remaining possibility in Claim 4 is ℓ “ AI. We then have

IBICJBJC concyclic Claim 3
ðùùùùñ PQGH concyclic Claim 4

ðùùùùñ X lies on AI,

finishing the problem.

Comment. The condition AB ă AC ă BC is used in an essential way in the solutions. In Solution 1,
it is used in the proof of Claim 3 to ensure that X lies in the interior of triangle IBC. In Solution 2,
it is used in the final step to ensure that =ABC and =BCA cannot be obtuse. In Solution 3, it
is used to exclude the case ℓ “ t. If the condition is removed, then the problem is no longer true:
whenever =ABC or =BCA is obtuse, there exists a choice of D on BC such that IBJBJCIC is cyclic
but AI, IBJC , and JBIC do not concur. This counterexample configuration can be constructed using
Solution 3 by letting X be the intersection of t with Γ that lies on the same side of BC as A and
constructing IB, IC , JB, and JC as described in the solution, from which we can reconstruct D.

Conversely, the problem holds whenever =ABC and =BCA are both not obtuse, as can be seen
from Solution 2. This is thus the weakest possible condition on triangle ABC that is necessary for the
problem to be true.
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When X lies on the tangent to circle IBC at I, there is no contradiction in the proof of Claim 3 in
Solution 1: circles IIBJC and IJBIC are distinct, and X is the radical centre of circles IIBJC , IJBIC ,
and IBJBICJC . There is also no contradiction in the final step of Solution 2, and indeed IBIC and BC
intersect at the foot of the altitude from A to BC.

There are no configuration issues with the direction p1q ùñ p2q. This implication holds without
any constraint on triangle ABC, and the proofs in Solutions 1 and 2 apply without any modification.
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Number Theory

N1. Find all positive integers n with the following property: for all positive divisors d of n,
we have that d ` 1 | n or d ` 1 is prime.

(Ghana)

Answer: n P t1, 2, 4, 12u.

Solution 1. It is easy to verify that n “ 1, 2, 4, 12 all work. We must show they are the only
possibilities. We write n “ 2km, where k is a nonnegative integer and m is odd. Since m | n,
either m ` 1 is prime or m ` 1 | n.

In the former case, since m ` 1 is even it must be 2, so n “ 2k. If k ě 3, we get a
contradiction, since 8 | n but 9 ∤ n. Hence k ď 2, so n P t1, 2, 4u.

In the latter case, we have m` 1 | 2km and m` 1 coprime to m, and hence m` 1 | 2k. This
means that m` 1 “ 2j with 2 ď j ď k (since j “ 1 gives m “ 1, which was considered earlier).

Then we have 2k `1 ∤ n: since 2k `1 is odd, it would have to divide m but is larger than m.
Hence, by the condition of the problem, 2k ` 1 is prime. If k “ 2, j must be 2 as well, and
this gives the solution n “ 12. Also, 2k´1 ` 1 ∤ n for k ą 2: since it is odd, it would have to
divide m. However, we have no solutions to 2k´1 ` 1 | 2j ´ 1 with j ď k: the left-hand side
is greater than the right unless j “ k, when the left-hand side is just over half the right-hand
side.

Since we have 2k | n and 2k ` 1 ∤ n, and 2k´1 | n and 2k´1 ` 1 ∤ n, we must have 2k ` 1
and 2k´1 ` 1 both prime. However, 2a ` 1 is a multiple of three if a is odd, so we must have
2k ` 1 “ 3 (impossible as this gives k “ 1) or 2k´1 ` 1 “ 3, which gives j “ k “ 2, whence
n “ 12.

Solution 2. We proceed as in Solution 1 as far as determining that n “ 2kp2j ´1q with j ď k.
Now, we have 2j | n but 2j ` 1 ∤ n, as it is odd and does not divide 2j ´ 1. Thus 2j ` 1 is

prime. The theory of Fermat primes tells us we must have j “ 2h with h ą 0.
Then 22

h
´ 1 is congruent to 3 or 6 (modulo 9) depending on whether h is odd or even,

respectively. In particular it is not divisible by 9, so n “ 2kp22
h

´ 1q is not divisible by 9; so we
must have k ď 2, since if k ě 3 then 8 | n but 9 ∤ n with 9 not prime.

Solution 3. Let p be the smallest integer not dividing n. Since p´ 1 is a divisor of n, p must
be a prime. Let 1 ď r ď p ´ 1 be the remainder of n modulo p. Since p ´ r ă p, we have
p ´ r | n, so we may consider the divisor d “ n

p´r
.

Since p | n ´ r, we have p | n ` p ´ r, whence p | d ` 1. Thus d ` 1 ∤ n; so it must be prime.
On the other hand, this prime is divisible by p, so we conclude d ` 1 “ p, which means that
n “ pp ´ 1qpp ´ rq.

Then from p ´ 2, p ´ 3 | n we get pp ´ 2qpp ´ 3q | 2pp ´ rq, from which we find

pp ´ 2qpp ´ 3q ď 2pp ´ rq ď 2pp ´ 1q.

Solving this quadratic inequality gives p ď 5, which means that n P t1, 2, 4, 8, 12, 16u. Of this
set, n “ 8 and n “ 16 are not solutions.

Solution 4. We suppose that n is not 1 or 2.
Since n | n and n ` 1 ∤ n, we know that n ` 1 is prime. Thus it is odd, so 2 | n; as n ą 2,

we have n
2

| n and n
2

` 1 ∤ n, so n
2

` 1 is prime. Thus it is also odd, so 4 | n.
We must then have n

4
` 1 | n or n

4
` 1 prime.
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In the former case, n
4

| 4pn
4

` 1q ´ n, so n
4

` 1 | 4. This means that n “ 4 or n “ 12.
In the latter case, n

4
` 1 must be odd if n ‰ 4. Thus we have n “ 8m where 2m` 1, 4m` 1,

8m ` 1 are all prime; n “ 8 does not work, so 3 | m (otherwise one of those numbers would be
divisible by 3). Thus 24 | n, so 25 | n as 25 is not prime.

Now suppose that p is the least positive integer not dividing n: as in Solution 3 we know
that p is prime, and what we have done so far shows that p ě 7. If p2 ´ 1 “ pp ´ 1qpp ` 1q is
the product of coprime integers less than p, it divides n, and p2 is not prime so also divides n
(a contradiction); p ´ 1 and p ` 1 are even and have no common factor higher than 2, so all
odd prime power divisors of their product are less than p and the only case where p2 ´ 1 is not
a product of coprime integers less than p is when one of p ´ 1 and p ` 1 is a power of 2, say
2m (with m ě 3). If p “ 2m ´ 1, then 3p ´ 1 “ 4p3 ˆ 2m´2 ´ 1q and 3 ˆ 2m´2 ´ 1 is an odd
integer less than p, so 3p ´ 1 | n and so 3p | n. Finally, if p “ 2m ` 1, then m is even and
2p ´ 1 “ 2m`1 ` 1 is a multiple of 3; the only case where it is a power of 3 is when m “ 2,
but we have m ě 3, so 2p ´ 1 is a product of coprime integers less than p and again we have a
contradiction.

Solution 5. As in Solution 4, we deduce that if n ą 2 then n must be even. We write
n “ 2 ¨ 3k ¨ r, where k is a nonnegative integer and 3 ∤ r.

Since r and 2r are both different and nonzero modulo 3, one of them must be congruent to
2 modulo 3. We’ll say that it is ar, where a P t1, 2u.

Since ar | n, we must have that ar ` 1 is either prime or a factor of n. In the first case,
ar ` 1 “ 3 because 3 | ar ` 1, and so n “ 2 ¨ 3k ¨ r, where r “ 2{a is 1 or 2. Noting that we
must have k ď 1 (else 9 | n but 10 ∤ n), we can examine cases to deduce that n P t2, 4, 12u are
the only possibilities.

Otherwise, ar ` 1 | n. Since ar ` 1 is coprime to r, we must in fact have that ar ` 1 | 2 ¨ 3k,
and since 3 | ar ` 1 by assumption we deduce that k ě 1. In particular, 3k ` 1 is an even
number that is at least 4, so is not prime and must divide n. As it is coprime to 3, we must in
fact have 3k ` 1 | 2r.

Let q1 and q2 be such that q1par`1q “ 2 ¨3k and q2p3k `1q “ 2r. We have that q1ar ă 2 ¨3k

and q23
k ă 2r, and multiplying these together gives q1q2a ă 4.

If a “ 2 then q1 “ q2 “ 1, so 2r ` 1 “ 2 ¨ 3k, which is not possible (considering both sides
modulo 2).

If a “ 1 then r must be equivalent to 2 modulo 3, so q2p3k ` 1q “ 2r gives that q2 is
equivalent to 1 modulo 3, whence q2 “ 1. So we deduce that 2r “ 3k ` 1. Thus, we deduce
that q1p3k ` 3q “ 4 ¨ 3k, which rearranges to give 3k´1p4 ´ q1q “ q1, whence 3k´1 ď q1 ă 4 and
so k ď 2. We can examine cases to deduce that n “ 12 is the only possibility.
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N2. Determine all finite, nonempty sets S of positive integers such that for every a, b P S
there exists c P S with a | b ` 2c.

(Netherlands)

Answer: The possible sets are S “ ttu and S “ tt, 3tu for any positive integer t.

Solution 1. Without loss of generality, we may divide all elements of S by any common
factor, after which they cannot all be even. As a ∤ b ` 2c for a even and b odd, the elements
of S are all odd.

We now divide into three cases:

Case 1: |S| “ 1.
The set S “ ttu clearly works.

Case 2: |S| “ 2.
Say S “ tr, su with r ă s, so either s | r ` 2r or s | r ` 2s, and in either case s | 3r. We

cannot have s “ 3r{2 as we assumed that r is odd, so s “ 3r and S “ tr, 3ru, which clearly
works by examining cases for a and b.

Case 3: |S| ě 3.
If all elements of S are odd then for any b, c P S, b ` 2c ı b pmod 4q. If a | b ` 2c with

a ” b pmod 4q, this means there exists k with b` 2c “ ka and k ” 3 pmod 4q, so k ě 3. If a is
the greatest element of S and b ă a, we have b ` 2c ă 3a, a contradiction. Thus when a is the
greatest element, no b ă a has b ” a pmod 4q (and thus all elements other than the greatest
are congruent modulo 4).

Let d and e be the largest and second largest element of S respectively. Let f ‰ d, e be any
other element of S. There is some c P S with e | f `2c, and e ı f `2c pmod 4q, so f `2c ě 3e,
so c ą e. Since e is the second largest element of S, c “ d, so e | f ` 2d, and this holds for all
f P S with f ă e, but can only hold for at most one such f . So |S| ď 3.

Hence the elements of S are d ą e ą f , and by the discussion above without loss of generality
we may suppose these elements are all odd, e ” f pmod 4q and d ı e pmod 4q. We have above
that e | f ` 2d. Furthermore, there exists some c P S with d | f ` 2c, and c ‰ d as d ą f so
d ∤ f , so c ď e; as f ` 2e ă 3e, we have e ą d{3. Since f ` 2c is odd and f ` 2c ă 3d, we have
f ` 2c “ d.

Subcase 3.1: c “ f .
Here d “ 3f and e | f ` 2d “ 7f . As e ą f and e ” f pmod 4q, we have e “ 7f{3 and the

elements are some multiples of t3, 7, 9u. But a “ 7 and b “ 9 have no corresponding value of c.

Subcase 3.2: c “ e.
Here d “ f ` 2e and e | f ` 2d “ 3f ` 4e so e | 3f . But this is not possible with e ą f and

e ” f pmod 4q.

Solution 2. As in Solution 1, we reduce to the case where all elements of S are odd. Since
all one-element sets satisfy the given conditions, we show that if |S| ě 2, then |S| “ 2 and
S “ tt, 3tu for some positive integer t.

Let d be the largest element. For any e P S with e ‰ d there must be a f P S such that
d | e ` 2f . This implies 2f ” ´e pmod dq, hence 2f ” d ´ e pmod dq. Now d ´ e is even
(because all elements in S are odd) and d is odd, so d´e

2
is an integer and we have f ” d´e

2

pmod dq. Further, 0 ă d´e
2

ă d, while we must also have 0 ă f ď d, so f “ d´e
2

. We conclude
that for any e P S with e ‰ d the integer d´e

2
is also in S and not equal to d.

Denote by e1 ă e2 ă ¨ ¨ ¨ ă ek ă d the elements of S, where k ě 1. Then d´e1
2

ą d´e2
2

ą

¨ ¨ ¨ ą
d´ek
2

are also elements of S, none of them equal to d. Hence we must have e1 “
d´ek
2

and
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ek “ d´e1
2

, so 2e1`ek “ d “ 2ek`e1. We conclude e1 “ ek, so k “ 1, and also d “ 2ek`e1 “ 3e1.
Hence S “ te1, 3e1u for some positive integer e1.

Solution 3. As in Solution 1, we reduce to the case where all elements of S are odd. Since
all one-element sets satisfy the given conditions, we show that if |S| ě 2, then |S| “ 2 and
S “ tt, 3tu for some positive integer t.

Let d be the largest element, and let e P S be any other element. We will say that x P S
pmod dq if the unique element y in t1, . . . , du such that x ” y pmod dq is an element of S. Note
that by the choice of d being the largest element, if x ‰ d, then x ı 0 pmod dq. The given
condition implies that if b P S, then ´ b

2
P S pmod dq. Repeating this gives ´ b

2
P S ñ b

4
P S

pmod dq, and by iterating, we have b P S ñ b
p´2qk

P S pmod dq for all k. Since d is odd, there
is some g such that p´2qg ” 1 pmod dq, so by setting k “ g ´ 1, we get that

for all d ‰ e P S,´2e P S pmod dq.

Now, if e ą d
2
, then ´2e P S pmod dq and d ´ 2e ă 0, so 2d ´ 2e P S, contradicting the

lack of even elements. Then e ă d
2

for any e P S z tdu, so we have e P S ñ d ´ 2e P S. Since
d ´ 2e ‰ d, we must have d ´ 2e ă d

2
, which rearranges to e ą d

4
.

Let λ P p0, 1q be a positive real number and suppose we have proved that e ą λd for any
e P S z tdu. Then d ´ 2e ą λd, which rearranges to e ă

p1´λqd
2

. Then d ´ 2e ă
p1´λqd

2
, which

rearranges to e ą
p1`λqd

4
. Defining λ0 “ 1

4
and λi “

1`λi´1

4
for i ě 1, we have shown that for all

e P S z tdu and all λi, e ą λid. Now note that the sequence λi is increasing and bounded above
by 1

3
, so it converges to some limit ℓ, which satisfies ℓ “ 1`ℓ

4
, so ℓ “ 1

3
. Hence e ě d

3
, but then

d ´ 2e ě d
3

implies e ď d
3
, so e must be d

3
, and we are done.

Comment. We can finish Solution 3 alternatively as follows: after showing that if e P S z tdu then
d ´ 2e P S z tdu, note that

pd ´ 2eq ´
d

3
“

2d

3
´ 2e “ ´2

ˆ

e ´
d

3

˙

.

So consider e P S z tdu maximising |e´ d
3 |. If e ‰ d

3 , them the above shows that |pd´2eq ´ d
3 | ą |e´ d

3 |,
which is a contradiction. Thus S z tdu is empty or equal to td

3u, which completes the proof.
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N3. Determine all sequences a1, a2, . . . of positive integers such that, for any pair of
positive integers m ď n, the arithmetic and geometric means

am ` am`1 ` ¨ ¨ ¨ ` an
n ´ m ` 1

and pamam`1 ¨ ¨ ¨ anq
1

n´m`1

are both integers.
(Singapore)

Answer: The only such sequences are the constant sequences (which clearly work).

Solution 1. We say that an integer sequence b1, b2, . . . is good if for any pair of positive
integers m ď n, the arithmetic mean bm`bm`1`¨¨¨`bn

n´m`1
is an integer. Then the condition in the

question is equivalent to saying that the sequences paiq and pνppaiqq for all primes p are good.
Claim 1. If pbiq is a good sequence, then n ´ m | bn ´ bm for all pairs of integers m, n.
Proof. This follows from n´m dividing bm ` bm`1 ` ¨ ¨ ¨ ` bn´1 and bm`1 ` bm`2 ` ¨ ¨ ¨ ` bn, and
then taking the difference. l

Claim 2. If pbiq is a good sequence where some integer b occurs infinitely many times, then
pbiq is constant.
Proof. Say bn1 , bn2 , bn3 , . . . are equal to b. Then for all m, we have that b ´ bm “ bnj

´ bm is
divisible by infinitely many different integers nj ´m, so it must be zero. Therefore the sequence
is constant. l

Now, for a given prime p, we look at the sequence pνppaiqq. Let k “ νppa1q. Then Claim 1
tells us that a1 ” anpk`1`1 pmod pk`1q for all n, which implies that νppanpk`1`1q “ k for all n.
We now have that k appears infinitely many times in this good sequence, so by Claim 2, the
sequence pνppaiqq is constant. This holds for all primes p, so paiq must in fact be constant.

Solution 2. As in Claim 1 of Solution 1, we have that ai`r ” ai pmod rq, which tells us that
the sequence ai is periodic modulo p with period p. Also, by a similar argument, we have that
ai`r{ai is the rth power of a rational number.

Now suppose that for some i ı j pmod pq we have ai, aj ı 0 pmod pq. As p and p ´ 1 are
coprime, we can find some i1 ” i pmod pq, j1 ” j pmod pq such that p´ 1 | i1 ´ j1. Then ai1{aj1

is a perfect pp ´ 1qth power, so

ai1 “ tup´1, aj1 “ tvp´1

for some positive integers t, u, v not divisible by p. By Fermat’s little theorem, up´1 and vp´1

must be 1 modulo p. So we must have

ai ” ai1 ” t ” aj1 ” aj pmod pq.

Thus all values of ai that are not divisible by p are congruent modulo p.

For the sum of p consecutive values to be divisible by p, this means that all the ai are
congruent modulo p. Since this is true for all primes p, the sequence must therefore be constant.
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Solution 3. Fix an arbitrary index m. First, we show that am divides an for sufficiently
large n. Let n be sufficiently large that n ą νppamq ` m for every prime p. By Claim 1 of
Solution 1, we have

νppamq ” νppanq pmod n ´ mq.

Since νppamq ă n´m, it follows that νppamq ď νppanq. This holds for every prime p, so am | an.

Next, suppose that there is some index k such that am does not divide ak. By the previous,
there is a maximal such k. Then ak`1, ak`2, . . . are all divisible by am. But now applying the
first condition gives

am | ak ` ak`1 ` ¨ ¨ ¨ ` ak`am´1,

so am divides ak, a contradiction. Therefore every term an is divisible by am.

As m was arbitrary, we now have am | an and vice versa for all m, n. So the sequence must
be constant.
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N4. Determine all positive integers a and b such that there exists a positive integer g such
that gcdpan ` b, bn ` aq “ g for all sufficiently large n.

(Indonesia)

Answer: The only solution is pa, bq “ p1, 1q.

Solution 1. It is clear that we may take g “ 2 for pa, bq “ p1, 1q. Supposing that pa, bq satisfies
the conditions in the problem, let N be a positive integer such that gcdpan ` b, bn ` aq “ g for
all n ě N .
Lemma. We have that g “ gcdpa, bq or g “ 2 gcdpa, bq.
Proof. Note that both aN ` b and aN`1 ` b are divisible by g. Hence

apaN ` bq ´ paN`1
` bq “ ab ´ b “ apb ´ 1q

is divisible by g. Analogously, bpa ´ 1q is divisible by g. Their difference a ´ b is then divisible
by g, so g also divides apb ´ 1q ` apa ´ bq “ a2 ´ a. All powers of a are then congruent modulo
g, so a ` b ” aN ` b ” 0 pmod gq. Then 2a “ pa ` bq ` pa ´ bq and 2b “ pa ` bq ´ pa ´ bq
are both divisible by g, so g | 2 gcdpa, bq. On the other hand, it is clear that gcdpa, bq | g, thus
proving the Lemma. l

Let d “ gcdpa, bq, and write a “ dx and b “ dy for coprime positive integers x and y. We
have that

gcd ppdxq
n

` dy, pdyq
n

` dxq “ d gcd
`

dn´1xn
` y, dn´1yn ` x

˘

,

so the Lemma tells us that

gcd
`

dn´1xn
` y, dn´1yn ` x

˘

ď 2

for all n ě N . Defining K “ d2xy`1, note that K is coprime to each of d, x, and y. By Euler’s
theorem, for n ” ´1 pmod φpKqq we have that

dn´1xn
` y ” d´2x´1

` y ” d´2x´1
p1 ` d2xyq ” 0 pmod Kq,

so K | dn´1xn ` y. Analogously, we have that K | dn´1yn ` x. Taking such an n which also
satisfies n ě N gives us that

K | gcdpdn´1xn
` y, dn´1yn ` xq ď 2.

This is only possible when d “ x “ y “ 1, which yields the only solution pa, bq “ p1, 1q.

Solution 2. After proving the Lemma, one can finish the solution as follows.
For any prime factor p of ab` 1, p is coprime to a and b. Take an n ě N such that n ” ´1

pmod p ´ 1q. By Fermat’s little theorem, we have that

an ` b ” a´1
` b “ a´1

p1 ` abq ” 0 pmod pq,

bn ` a ” b´1
` a “ b´1

p1 ` abq ” 0 pmod pq,

then p divides g. By the Lemma, we have that p | 2 gcdpa, bq, and thus p “ 2. Therefore, ab` 1
is a power of 2, and a and b are both odd numbers.

If pa, bq ‰ p1, 1q, then ab ` 1 is divisible by 4, hence ta, bu “ t´1, 1u pmod 4q. For odd
n ě N , we have that

an ` b ” bn ` a ” p´1q ` 1 “ 0 pmod 4q,

then 4 | g. But by the Lemma, we have that ν2pgq ď ν2p2 gcdpa, bqq “ 1, which is a contradiction.
So the only solution to the problem is pa, bq “ p1, 1q.
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N5. Let S be a finite nonempty set of prime numbers. Let 1 “ b1 ă b2 ă ¨ ¨ ¨ be the
sequence of all positive integers whose prime divisors all belong to S. Prove that, for all but
finitely many positive integers n, there exist positive integers a1, a2, . . . , an such that

a1
b1

`
a2
b2

` ¨ ¨ ¨ `
an
bn

“

R

1

b1
`

1

b2
` ¨ ¨ ¨ `

1

bn

V

.

(Croatia)

Solution 1. If S has only one element p, then bi “ pi´1 and we can easily find a1, . . . , an
with 2 “

Q

řn´1
i“0

1
pi

U

“
řn´1

i“0
ai

pi´1 by taking a1 “ a2 “ ¨ ¨ ¨ “ an´1 “ 1 and choosing an “

pn´1 ´ pp ` p2 ` ... ` pn´2q.
More generally, observe that the sum of 1

bi
over all i is

ÿ

i

1

bi
“

ź

i

ˆ

1 `
1

pi
`

1

p2i
` . . .

˙

“
ź

pPS

p

p ´ 1
.

In particular, if n is large enough, then
S

n
ÿ

j“1

1

bj

W

“

S

ź

pPS

p

p ´ 1

W

.

For the remainder of the proof, we will only consider n large enough that this equality holds.
Next, we handle the special case S “ t2, 3u, for which this product is 3. Start by setting

ai “

#

1, if 2bi ď bn;

2, if 2bi ą bn.

Then,
ÿ

iďn
ν3pbiq“t

ai
bi

“

#

2
3t
, if bn ě 3t;

0, otherwise.

As a result,

ÿ

iďn

ai
bi

“
ÿ

tě0
3tďbn

2

3t

“ 3 ´
1

3T

where T is the largest t ě 0 with 3t ď bn. Thus, increasing aj by one (where bj “ 3T ) gives a
sequence of ai that works.

Otherwise, we may assume that |S| ą 1 and S ‰ t2, 3u, which means that the product
ś

pPS
p

p´1
is not an integer. Indeed,

• if |S| ą 2 then 2 divides the denominator at least twice and so divides the denominator
of the overall fraction;

• if |S| “ 2 and 2 R S then 2 divides the denominator and not the numerator;
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• if S “ t2, pu then the product is 2p{pp ´ 1q which is not an integer for p ą 3.

It follows that for some fixed α ą 0, we have that
S

ź

pPS

p

p ´ 1

W

“
ź

pPS

p

p ´ 1
` α,

from which it follows that
S

n
ÿ

i“1

1

bi

W

´

n
ÿ

i“1

1

bi
ą α.

It will now suffice to prove the following claim.
Claim. Suppose that n is large enough, and let ep be the largest nonnegative integer such that
pep ď bn. Let M “

ś

pPS p
ep . If u is a positive integer such that u{M ą α, then there exist

nonnegative integers ai such that
ÿ

i

ai
bi

“
u

M
.

The problem statement follows after replacing ai with ai ` 1 for each i.
To prove this, choose some constant c such that

ř

pPS p
´c ă α, and suppose n is large enough

that pc ă bn for each p P S; in particular, pc | M with M defined as above.
For each p P S, let ip be such that bip “ pep and choose the smallest nonnegative integer aip

satisfying

pep´c
ˇ

ˇ

ˇ
aip

ˆ

M

pep

˙

´ u.

Such an aip must exist and be at most pep´c; indeed, M
pep

is an integer coprime to p, so we
can take aip to be equal to u times its multiplicative inverse modulo pep´c. The sum of the
contributions to the sum from the aip is at most

ÿ

pPS

pep´c

pep
“

ÿ

pPS
p´c

ă α.

So, we have
u

M
“

ÿ

pPS

aip
pep

`
r

ś

pPS p
c
,

where r is an integer because of our choice of aip and r is nonnegative because of the bound
on u. Simply choose ai “ r where bi “

ś

pPS p
c to complete the proof.

Solution 2. We reduce to the claim as in Solution 1, and provide an alternative approach for
constructing the ai.

Let p0 P S be the smallest prime in S. Let z0 “ u{M . We construct a sequence z0, z1,
z2, . . . and values of ai by the following iterative process: to construct zj`1,

• select the largest prime p P S dividing the denominator of zj, and let µ be the number of
times p divides the denominator of zj;

• choose the largest ν such that pν0p
µ ď bn, and let i ď n be such that bi “ pν0p

µ;

• choose 0 ď ai ă p such that the denominator of zk ´ ai{bi has at most µ ´ 1 factors of p,
and let zk`1 “ zk ´ ai{bi;

• continue until p0 is the only prime dividing the denominator of zk.
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Note that we can always choose ai in step 3; by construction, zkbi has no factors of p in its
denominator, so must be realised as an element of Zp.

Each time we do this, bi ą M{p0 by construction, so

ai
bi

ă
pp0
M

ď
p0p1
M

,

where p1 is the largest prime in S. And the number of times we do this operation is at most
ÿ

pPS
pąp0

ep ď |S| log2pMq,

so the sum of the ai{bi we have assigned is at most |S|p0p1 log2pMq{M .
Choose n large enough that log2pMq{M ă α; after subtracting the above choices of ai{bi

from u{M , we have a quantity of the form r{p
ep0
0 , where r is an integer by construction and

r is positive by the above bounds. Simply set ai “ r where bi “ p
ep0
0 to complete the proof.

Solution 3. As in Solution 1, we may handle |S| “ 1 and S “ t2, 3u separately; otherwise,
we can define α as we did in that solution. Also define ep to be the largest nonnegative integer
such that pep ď bn as we did in Solution 1.

We will show that, for n sufficiently large, we may choose some j ď n, and positive inte-
gers ai, such that

ÿ

i‰j

ai
bi

´
ÿ

i‰j

1

bi
ă α.

and all ai
bi

are integer multiples of 1
bj

. We then set aj to be the least positive integer such that
the sum on the left is an integer, which will obviously have the required value.

Concretely, choose j such that bj “
ś

pPS p
tep{|S|u, which is less than bn by construction.

For i ‰ j, set ai “ bi{ gcd pbi, bjq. We have

ÿ

i‰j

ai
bi

´
ÿ

i‰j

1

bi
ă

ÿ

i‰j
aią1

ai
bi
.

If ai ą 1, then there must be some p P S for which ptep{|S|u`1 | bi, and so

ai
bi

“
1

gcd pbi, bjq
ď

1

ptep{|S|u
ă

p

b
1{|S|
n

,

where the last inequality follows from the fact that pep`1 ą bn.
Now n ď

ś

pPSplogppbnq ` 1q ď p2 log bnq|S|, so

ÿ

i‰j
aią1

ai
bi

ď
p2 log bnq|S|

b
1{|S|
n

,

and so we can choose n large enough that this quantity is less than α, as required.
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N6. Let n be a positive integer. We say that a polynomial P with integer coeffi-
cients is n-good if there exists a polynomial Q of degree 2 with integer coefficients such that
QpkqpP pkq ` Qpkqq is never divisible by n for any integer k.

Determine all integers n such that every polynomial with integer coefficients is an n-good
polynomial.

(France)

Answer: The set of such n is any n ą 2.

Solution 1. First, observe that no polynomial is 1-good (because QpXqpP pXq`QpXqq always
has roots modulo 1) and the polynomial P pXq “ 1 is not 2-good (because QpXqpQpXq ` 1q is
always divisible by 2).

Now, if P is d-good with some Q, then Q ¨ pP ` Qq has no roots mod d. Therefore, it
certainly has no roots mod n for d | n, so P must be n-good. Consequently, it suffices to show
that all polynomials are n-good whenever n is an odd prime, or n “ 4.

We start by handling the case n “ 4. We will construct a Q such that QpXq is never divisible
by 4 and QpXq ` P pXq is always odd; this will clearly show that P is 4-good. Note that any
function modulo 2 must be either constant or linear – in other words, there are a, b P t0, 1u

such that P pXq “ aX ` b mod 2 for all X. If a “ 0 then set QpXq “ 4X2 ` b` 1, and if a “ 1
then set QpXq “ X2 ` b ` 1; in all cases, Q will satisfy the required properties.

It remains to prove that any polynomial is p-good, where p is an odd prime. We will prove
that for any function f defined mod p, there is a quadratic Q with no roots mod p such that
Qpxq ‰ fpxq mod p for all x; the statement about P then follows with f replaced by ´P . For
the remainder of the proof, we will consider all equalities modulo p.

Suppose that a function f not satisfying the above exists; in other words, f has the property
that for any quadratic Q with no roots mod p, there is some x such that Qpxq “ fpxq. Without
loss of generality, we may assume that f has no roots mod p. To see why, suppose that fpuq “ 0
for some u, and let g be the function such that gpxq “ fpxq for x ‰ u and gpuq “ 1. For any Q
with no roots, we know that there is some x ‰ u such that P pxq “ fpxq, and so P pxq “ gpxq

for that choice of x. In particular, g is also not p-good.
Now, suppose first that there is some nonzero t such that t is not in the image of f . Then

we may take QpXq “ pX2 ` t; this quadratic is never equal to f and is never zero. Thus,
f must be surjective onto the nonzero residues mod p. There are p choices for X and p ´ 1
nonzero residues mod p, so there must be some x1 ‰ x2 mod p such that fpx1q “ fpx2q, and
f is a bijection from the set of residues mod p not equal to x2 to the set of nonzero residues
mod p.

Now, note that we may choose any b and c with b nonzero and replace fpXq with gpXq “

fpbX`cq; if there were some Q with no roots such that Qpxq ‰ gpxq for all x, then QpX{b´c{bq
would work for f . Choose b and c such that bx1 ` c “ 1 and bx2 ` c “ ´1; such b and c must
exist (we may take b “ 2{px1 ´ x2q and c “ px1 ` x2q{px2 ´ x1q). Renaming g to f , we see that
we may assume fp1q “ fp´1q.

Let r1 be a quadratic nonresidue mod p. Choose y ‰ 0 such that fpyq “ p1´ r1qfp0q, which
must exist as the right hand side is nonzero and 1 ´ r1 is not equal to 1. Choose r “ y2{r1,
which is a quadratic nonresidue.

Consider ϕpXq “ fpXq{pX2 ´ rq. By definition, ϕp1q “ ϕp´1q and ϕp0q “ ϕpyq, so there
are no more than p´ 2 values in the image of ϕ. Choose some nonzero a not in the image of ϕ,
so fpXq{pX2 ´ rq is never equal to a. The quadratic QpXq “ apX2 ´ rq is never zero and also
never equal to fpXq, which completes the proof.
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Comment. In fact, there is no need to pass from polynomials P to functions f , as any function mod p
is a polynomial. Concretely, instead of passing from f to g, we would have instead replaced P pXq with
P pXq ` 1 ´ pX ´ uqp´1, which is a polynomial that is unchanged except at X “ u.

Solution 2. Given f a function mod p such that f is surjective onto the nonzero ele-
ments of Z{pZ and fp1q “ fp´1q, we provide an alternative approach to construct a nonzero
quadratic QpXq such that QpXq ‰ fpXq. Let r be the smallest quadratic nonresidue mod p
(so r ´ 1 is a square) and let a vary over the nonzero elements mod p; we will show that it is
possible to choose QapXq “ apX2 ´ rq for some choice of a. Note that any quadratic of this
form will be nowhere zero.

Suppose that no such Qa works. Then, for each a, there exists x such that apx2 ´rq “ fpxq.
We may assume that x ‰ ´1, as if the equality holds for x “ ´1 then it also holds for x “ 1.
However, apx2 ´ rq “ fpxq implies a “ fpxq{px2 ´ rq, so fpxq{px2 ´ rq must be a surjection
from tx ‰ ´1u to the set of nonzero a, and so this is a bijection. In particular, for each a, there
exists a unique xa such that fpxaq “ apx2

a ´ rq.
We now have

ź

t‰0

t “
ź

a‰0

fpxaq

“
ź

a‰0

a
ź

a‰0

px2
a ´ rq

“
ź

a‰0

a
ź

x‰´1

px2
´ rq

where the first equality follows because f is surjective onto the nonzero residues mod p, and
the second equality follows from the definition of xa. The two products cancel, which means
that

ś

x‰´1px
2 ´ rq “ 1.

However, we also get

ź

x‰´1

px2
´ rq “ p´rqp1 ´ rq

˜

pp´1q{2
ź

x“2

px2
´ rq

¸2

.

However, this is a contradiction as ´rp1 ´ rq “ rpr ´ 1q, which is not a quadratic residue (by
our choice of r).

Comment. By Wilson’s theorem, we know that the product of the nonzero elements mod p is ´1;
however, this fact was not necessary for the solution so we chose to present the solution without needing
to state it.

Comment. One can in fact show that
ź

x‰´1

px2 ´ rq “
´4r

1 ´ r
.

To do this, note that the polynomial X
p´1
2 ´ 1 has the p´1

2 quadratic residues as roots, so we have
ź

s quad. res.

pX ´ sq “ X
p´1
2 ´ 1

and so
ź

x‰0

pX ´ x2q “ pX
p´1
2 ´ 1q2.

Since r is a quadratic nonresidue, by Euler’s criterion r
p´1
2 “ ´1, and the result follows.

Therefore, one can replace the condition that r is the smallest quadratic nonresidue with the
condition that r is a quadratic nonresidue not equal to ´1

3 (which is possible for all p ě 3).
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Solution 3. As in Solution 1, we will reduce to the case of p being an odd prime and f being
a function mod p with no roots which is surjective onto the set of nonzero residues mod p,
although we make no assumption about the values of x1 and x2 with fpx1q “ fpx2q.

We will again consider quadratics of the form Qa,b,cpXq “ aRpbX`cq, where RpXq “ X2´r
for an arbitrary fixed quadratic nonresidue r, a and b are nonzero mod p, and c is any residue
mod p.

For each fixed b and c, there must be n pairs pa, xq such that aRpbx ` cq “ fpxq, because
there must be exactly one value of a for each x. If any a appears in no such pair then we are
done, so assume otherwise. In other words, there must be exactly one a such that there are
two such x, and for all other a there is only one such x.

Thus, for each pb, cq, there is exactly one unordered pair tx1, x2u such that for some a we
have fpxiq “ aRpbxi ` cq; in other words, there is exactly one unordered pair tx1, x2u such that
fpx1q{Rpbx1 ` cq “ fpx2q{Rpbx2 ` cq.

Now, we show that for each unordered pair tx1, x2u there must be at least one pair pb, cq
such that fpx1q{Rpbx1 ` cq “ fpx2q{Rpbx2 ` cq. Indeed, let t “ fpx1q{fpx2q. There must be
some x1

1, x
1
2 such that Rpx1

1q{Rpx1
2q “ t; this is because RpXq and tRpXq both take p`1

2
nonzero

values mod p, so the intersection must be nonempty by the pigeonhole principle. Choosing b
and c such that bx1 ` c “ x1

1 and bx2 ` c “ x1
2 gives the claim.

Note further that if pb, cq and tx1, x2u satisfy the relation, then the same is true for p´b,´cq
and tx1, x2u because Rpbx ` cq “ Rp´bx ´ cq. Since b is nonzero, this means that each pair
tx1, x2u corresponds to at least two pairs pb, cq. However, since there are ppp ´ 1q pairs pb, cq
with b nonzero and ppp´1q{2 unordered pairs tx1, x2u, each tx1, x2u must correspond to exactly
two pairs pb, cq and p´b,´cq for some pb, cq.

Now, since the image of f has only p ´ 1 elements, there must be some x1, x2 such that
fpx1q “ fpx2q. Choose any b, c such that bx1 ` c “ ´pbx2 ` cq, so Rpbx1 ` cq “ Rpbx2 ` cq and
so fpx1q{Rpbx1 ` cq “ fpx2q{Rpbx2 ` cq. There is such a pair b, c for any nonzero b, so there
are at least p ´ 1 such pairs, and this quantity is greater than 2 for p ě 5.

Finally, for the special case that p “ 3, we observe that there must be at least one allowed
value for Qpxq for each x, so there must exist such a quadratic Q by Lagrange interpolation.

Comment. We may also handle the case p “ 3 as follows. Recall that we may assume f is nonzero
and surjective onto t1, 2u mod 3, so the image of f must be p1, 1, 2q or p1, 2, 2q in some order. Without
loss of generality fp1q “ fp2q, so we either have pfp0q, fp1q, fp2qq “ p1, 2, 2q or p2, 1, 1q. In the first
case, take QpXq “ 2X2 ` 2, and in the second case take QpXq “ X2 ` 1.

In some sense, this is equivalent to the Lagrange interpolation approach, as in each case the
polynomial QpXq can be determined by Lagrange interpolation.

Solution 4. Again, we reduce to the case of p being an odd prime and f being a function
mod p; we will show that there is a quadratic which is nowhere zero such that Qpxq “ fpxq has
no root. We can handle the case of p “ 3 separately as in Solution 3, so assume that p ě 5.

We will prove the following more general statement: let p ě 5 be a prime and let A1, A2,
. . . , Ap be subsets of Z{pZ with |Ai| “ 2 for all i. Then there exists a polynomial Q P Z{pZrXs

of degree at most 2 such that Qpiq R Ai for all i. Indeed, applying this statement to the sets
Ai “ t0, fpiqu (and adding pX2 if necessary) produces a quadratic Q satisfying the desired
property.

Choose the coefficients of Q uniformly at random from Z{pZ, and let T be the random
variable denoting the number of i for which Qpiq P Ai. Observe that for k ď 3, we have

E
„ˆ

T

k

˙ȷ

“ 2k
ˆ

p

k

˙

p´k.

To see why, let k ď 3. If S Ď Z{pZ has size k and paiqiPS is a k-tuple, the probability that
Qpiq “ ai on S is equal to p´k; for k “ 3 this follows by Lagrange interpolation, and for k ă 3
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it follows from the k “ 3 case by summing. The expectation is therefore equal to the number
of S Ď Z{pZ of size k times the probability that Qpiq P Ai for each i P S, which is equal to the
right hand side as each Ai has size 2.

Now, observe that we have the identity pt´ 1qpt´ 3qpt´ 4q “ ´12` 12
`

t
1

˘

´ 10
`

t
2

˘

` 6
`

t
3

˘

, so

ErpT ´ 1qpT ´ 3qpT ´ 4qs “ ´12 ` 12E
„ˆ

T

1

˙ȷ

´ 10E
„ˆ

T

2

˙ȷ

` 6E
„ˆ

T

3

˙ȷ

“ ´12 ` 12 ¨ 2 ´ 10 ¨ 2

ˆ

1 ´
1

p

˙

` 6 ¨
4

3

ˆ

1 ´
1

p

˙ ˆ

1 ´
2

p

˙

“ ´
4

p
`

16

p2
.

This is negative for p ě 5. Because pt ´ 1qpt ´ 3qpt ´ 4q ě 0 for all integers t ą 0, it then
follows that T “ 0 with positive probability, which implies that there must exist some Q with
Qpiq R Ai for all i, as desired.

Comment. We do not have much freedom to choose a different polynomial in place of RpT q “

pT ´ 1qpT ´ 3qpT ´ 4q in this argument. Indeed, it can be shown (by comparing coefficients of
`

T
K

˘

)
that if R has degree at most 3, then the expected value of RpT q tends to 1

3pRp4q ` 2Rp1qq as p
tends to infinity, so R must have both 1 and 4 as roots. In particular, R must be of the form
RpT q “ pT ´ 1qpT ´ 4qpT ´ dq for some d ě 3, and if d ă 4 then the argument works for any p with
p ą 4{p4 ´ dq.
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N7. Let Zą0 denote the set of positive integers. Let f : Zą0 Ñ Zą0 be a function satisfying
the following property: for m, n P Zą0, the equation

fpmnq
2

“ fpm2
qfpfpnqqfpmfpnqq

holds if and only if m and n are coprime.

For each positive integer n, determine all the possible values of fpnq.
(Japan)

Answer: All numbers with the same set of prime factors as n.

Common remarks. We refer to the given property as P pm,nq. We use the notation radpnq

for the radical of n: the product of the distinct primes dividing n.

Solution 1. We start with a series of straightforward deductions:

• From P p1, 1q, we have fp1q2 “ fp1qfpfp1qq2, so fp1q “ fpfp1qq2.

• From P p1, fp1qq, we have fpfp1qq2 “ fp1qfpfpfp1qqqfpfpfp1qqq, so fpfpfp1qqq “ 1.

• From P p1, fpfp1qqq, we have fpfpfp1qqq2 “ fp1qfpfpfpfp1qqqqfpfpfpfp1qqqq, which sim-
plifies to 1 “ fp1q3, so fp1q “ 1.

• From P p1, nq we deduce fpnq “ fpfpnqq for all n.

• From P pm, 1q we deduce fpmq “ fpm2q for all m.

• Simplifying P pm,nq, we have that

fpmnq
2

“ fpmqfpnqfpmfpnqq

if and only if m and n are coprime; refer to this as Qpm,nq.

• From Qpm, fpnqq, we have that fpmfpnqq “ fpmqfpnq if and only if m and fpnq are
coprime; refer to this as Rpm,nq.

Claim. If fpaq “ 1, then a “ 1.
Proof. If a ‰ 1, then Qpa, aq gives fpaq2 ‰ fpaq2fpafpaqq. If fpaq “ 1, then both sides simplify
to 1, a contradiction. l

Claim. If n ‰ 1 then gcdpn, fpnqq ‰ 1.
Proof. If gcdpn, fpnqq “ 1, then Qpfpnq, nq gives fpnfpnqq2 “ fpnq3, and Qpn, fpnqq gives
fpnfpnqq2 “ fpnq2fpnfpnqq, which together yield fpnq “ 1 for a contradiction. l

Claim. For all n we have radpnq | fpnq.
Proof. For any prime p | n, write n “ pvn1 with p ∤ n1. From Qppv, n1q we have fpnq2 “

fppvqfpn1qfppvfpn1qq. Since gcdppv, fppvqq ‰ 1, it follows that p | fppvq, so p | fpnq, and thus
radpnq | fpnq. l

Claim. If n is coprime to fpkq, then fpnq is coprime to fpkq.
Proof. From Qpfpkq, nq we have fpnfpkqq2 “ fpkqfpnqfpfpkqfpnqq; applying Rpn, kq to the
LHS, we conclude that fpkqfpnq “ fpfpkqfpnqq. Applying Rpfpnq, kq we deduce that fpnq is
coprime to fpkq, as required. l

Claim. If p is prime then fppq is a power of p.
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Proof. Suppose otherwise. We know that p | fppq; let q ‰ p be another prime with q | fppq.
If, for some positive integer N , we have p ∤ fpNq, then fppq is coprime to fpNq, so q ∤ fpNq,

so q ∤ N ; thus, if q | N , then p | fpNq (and in particular, p | fpqq, by taking N “ q).
Similarly, if q ∤ fpNq then fpqq is coprime to fpNq; as p | fpqq, this means p ∤ fpNq, so p ∤ N .

So if p | N , then q | fpNq.
Together with radpnq | fpnq, this means that for any n not coprime to pq, we have pq | fpnq.
Let m “ mintνppfpxqq | x is not coprime to pqu, and let X be a positive integer not coprime

to pq such that νppfpXqq “ m. The argument above shows m ě 1. We can write fpXq “

pmqyX 1, where y ě 1, p ∤ X 1 and q ∤ X 1. Since fpfpXqq “ fpXq we have fppmqyX 1q “ pmqyX 1.
Applying Qppm, qyX 1q gives ppmqyX 1q2 “ fppmqfpqyX 1qfppmfpqyX 1qq. The RHS is divisible
by p3m but the LHS is only divisible by p2m, yielding a contradiction. l

Claim. For any integer n, radpfpnqq “ radpnq.
Proof. We already have that radpnq | fpnq, so it remains only to show that no other primes
divide fpnq. If p is prime and p ∤ n, the previous Claim shows that n is coprime to fppq, and
thus fpnq is coprime to fppq; that is, p ∤ fpnq. So exactly the same primes divide fpnq as
divide n. l

It remains only to exhibit functions that show all values of fpnq with radpfpnqq “ radpnq

are possible. Given eppq ě 1 for each prime p, take

fpnq “
ź

p|n

peppq

and we verify by examining exponents of each prime that this satisfies the conditions of the
problem.

Comment. A quicker but less straightforward proof that fp1q “ 1 is to let fpnq “ M be the least
value that f takes; then P p1, nq gives M2 “ fpnq2 “ fp1qfpfpnqq2 ě M3 so M “ 1 and fp1q “ 1.

Solution 2. As in Solution 1, we see that there are indeed functions f satisfying the given
condition and producing all the given values of fpnq, and we follow Solution 1 to show the
following facts:

• fp1q “ 1.

• fpmq “ fpm2q for all m.

• fpnq “ fpfpnqq for all n.

• fpmnq2 “ fpmqfpnqfpmfpnqq if and only if m and n are coprime; refer to this as Qpm,nq.

Taking Qpm,nq together with Qpn,mq gives that fpmfpnqq “ fpnfpmqq if m and n are coprime.
Suppose now that m is coprime to both n and fpnq. We have fpmnq2 “ fpmqfpnqfpmfpnqq

and squaring both sides gives

fpmnq
4

“ fpmq
2fpnq

2fpmfpnqq
2

“ fpmq
2fpnq

2fpmqfpfpnqqfpmfpfpnqqq

“ fpmq
3fpnq

3fpmfpnqq.

Thus fpmfpnqq “ fpmqfpnq, so fpmnq2 “ fpmq2fpnq2, so fpmnq “ fpmqfpnq “ fpmfpnqq “

fpnfpmqq.



If m is coprime to both n and fpnq but however n is not coprime to fpmq, we have

fpnfpmqq
2

‰ fpnqfpfpmqqfpnfpfpmqqq

“ fpnqfpmqfpnfpmqq

“ fpnfpmqq
2,

a contradiction. Thus, given that m and n are coprime, we know that m is coprime to fpnq if
and only if n is coprime to fpmq. In particular, if p and q are different primes, then p | fpqq

if and only if q | fppq, and likewise, for any positive integer k, p | fpqkq if and only if q | fppq.
More generally, if p ∤ n, then p | fpnq if and only if n is not coprime to fppq.

Now form a graph whose vertices are the primes, and where there is an edge between primes
p ‰ q if and only if p | fpqq (and so q | fppq); every vertex has finite degree. For any integer n,
the primes dividing fpnq are all the primes that are neighbours of any prime q | n, together
possibly with some further primes p | n.

If p and q are different primes, we have fppfpqqq “ fpqfppqq. The LHS is divisible by all
primes that (in the graph) are neighbours of p or neighbours of neighbours of q, and possibly
also by p and by some primes that are neighbours of q, and a corresponding statement with
p and q swapped applies to the RHS. Thus any prime that is a neighbour of a neighbour of q
must be one of: p, q, distance 1 from q, or distance 1 or 2 from p. For any prime r that is
distance 2 from q, there are only finitely many primes p that it is distance 2 or less from, so by
choosing a suitable prime p (depending on q) we conclude that every prime that is a neighbour
of a neighbour of q is actually q itself or a neighbour of q.

So the connected components of the graph are (finite) complete graphs. If m is divisible
only by primes in one component, and n is divisible only by primes in another component, then
fpmnq “ fpmqfpnq. If n is divisible by more than one prime from a component, considering
the expression for fpmnq2 as applied with successive prime power divisors of n shows that
fpnq is divisible by all the primes in that component. However, while fppkq is divisible by all
the primes in the component of p except possibly for p itself, we do not yet know that p | fppkq.
We now consider cases for the order of a component.

For any prime p, we cannot have fppkq “ 1, because Qppk, pkq gives

fpp2kq
2

‰ fppkqfppkqfppkfppkqq,

and simplifying using fpm2q “ fpmq results in 1 ‰ 1. So for a component of order 1, fppkq is
a positive power of p, so has the same set of prime factors as p, as required.

Now consider a component of order at least 2. Since fpfpnqq “ fpnq, if the component
has order at least 3, then for any n ‰ 1 whose prime divisors are in that component, fpnq is
divisible by all the primes in that component. If the component has order 2, we saw above
that this is true except possibly for n “ pk. However, if the primes in the component are p
and q, and fppkq “ qℓ, then fpqℓq “ fpfppkqq “ fppkq “ qℓ, which contradicts p | fpqℓq. So for
any component of order at least 2, and any n ‰ 1 whose prime divisors are in that component,
fpnq is divisible by all the primes in that component.

In a component of order at least 2, let m be the product of all the primes in that component,
and let t be maximal such that mt | fpnq for all n ‰ 1 whose prime divisors are in that
component; we have seen that t ě 1. If m and n are coprime numbers greater than 1, all of
whose prime divisors are in that component, then Qpm,nq tells us that m3t{2 | fpmnq. For any
n1 ‰ 1, all of whose prime divisors are in that component, fpn1q is divisible by all the primes in
that component, so can be expressed as such a product, so m3t{2 | fpfpn1qq “ fpn1q. But this
means t ě 3t{2, a contradiction, so all components have order 1, and we are done.
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